Response surface methodology and adaptive neuro-fuzzy inference system for adsorption of reactive orange ۱۶ by hydrochar

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 153

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GJESM-9-3_002

تاریخ نمایه سازی: 7 اسفند 1401

چکیده مقاله:

BACKGROUND AND OBJECTIVES: The prediction models, response surface methodology and adaptive neuro-fuzzy inference system are utilized in this study. This study delves into the removal efficiency of reactive orange ۱۶ using hydrochar derived from the Prosopis juliflora roots. Hydrochar dose, pH, temperature, and initial reactive orange ۱۶ concentration were studied in batch processes. The correlation coefficients for the batch processes were found to be ۰.۹۷۸ and ۰.۹۹۹۹. The results denote that the adaptive neuro-fuzzy inference system predicted the reactive orange ۱۶ removal efficiency more accurately than the response surface methodology model.METHODS: Prosopis juliflora roots roots are converted into hydrochar to remove azo dye from textile waste water. Prosopis juliflora roots roots were collected from Ramanad District, Southern Tamil Nadu, India. The moisture content was lowered by drying for ۲۴ hours at ۱۰۳ degree celcius in an oven with hot air. This biomass was thermally destroyed at ۳۰۰ degree celcius for ۱۵ minutes without oxygen in an autoclave in a muffle furnace (heating rate: ۵ degree celcius per minute). As soon as it reaches room temperature, the hydrochar residue of this biomass was used for adsorption investigations. The batch adsorption process was conducted for ۶ hours in a ۲۵۰ milliliter Erlenmeyer conical flask with a ۱۰۰ milliliter working volume using an orbital shaker. The pH, dosage, concentration, and temperature are the four parameters chosen for this study to find the maximum removal efficiency of the dye from aqueous solutions. This study validated adaptive neuro-fuzzy inference system, an artificial neural network with a fuzzy inference system, using response surface methodology projected experimental run with Box–Behnken method.FINDINGS: The adaptive neuro-fuzzy inference system model is created alongside the response surface methodology model to compare experimental outcomes. Experimental data was evaluated using a hybrid least square and gradient technique. Statistical and residual errors assessed experimental and mathematical model correctness. Experimental data matched the adaptive neuro-fuzzy inference system results. Statistical error analysis verified the model’s accuracy and precision against experimental data.CONCLUSION: Response surface methodology and adaptive neuro-fuzzy inference system optimized process conditions. At pH ۲, ۲ gram per litre  hydrochar dosage, ۳۵ degree celcius , and a reactive orange ۱۶ starting concentration of ۲۵۰ milligram per liter, removal effectiveness reached ۸۶.۱ percent. Adaptive neuro-fuzzy inference system predicted higher values than response surface methodology, with batch correlation coefficients of ۰.۹۹۹۹ and ۰.۹۹۹۷, respectively. Mathematical techniques can accurately estimate dye removal efficiency from aqueous solutions.

کلیدواژه ها:

Adaptive neuro-fuzzy inference system ، Hydrochar ، Reactive orange-۱۶ (RO ۱۶) ، Response surface methodology ، Statistical error analysis

نویسندگان

J. Oliver Paul Nayagam

Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India

K. Prasanna

Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmad A.A.; Hameed, B.H.; Ahmad, A.L., (۲۰۰۹). Removal of disperse ...
  • Aksu, Z., (۲۰۰۵). Application of biosorption for the removal of ...
  • Aravind, J.; Kanmani, P.;Sudha, G.; Balan, R., (۲۰۱۶). Optimization of ...
  • Beesley, L.; Moreno, J.E.; Gomez, J.L.; Harris, E.; Robinson, B.; ...
  • Carneiro, P.A.; Osugi, M.E.; Fugivara, C.S.; Boralle, N.; Furlan, M; ...
  • Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; ...
  • Chinwetkitvanich, S.; Tuntoolvest, M; Panswad, T., (۲۰۰۰). Anaerobic decolorization of ...
  • Crini, G., (۲۰۰۶). Non-conventional low-cost adsorbents for dye removal: a ...
  • Deb, A.; Debnath, A.; Saha, B., (۲۰۲۰). Ultrasound aided rapid ...
  • Del Cerro, R.T.G.; Subathra, M.S.P.; Kumar, N.M.; Verrastro, S.; George, ...
  • Ghoneim, M.M.; El-Desoky, H.S.; El-Moselhy, K.M.; Amer, A.; Abou El-Naga, ...
  • Ghorbani, F.; Kamari, S., (۲۰۱۶). Application of response surface methodology ...
  • Gopal, N.; Asaithambi, M.; Sivakumar, P.; Sivakumar, V., (۲۰۱۴). Adsorption ...
  • Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A., ...
  • Hussein, H.; Ghada, S. A.; Sami, A. S.; Rehab, M., ...
  • Jaafaria, J.; Yaghmaeiana, K., (۲۰۱۹). Response surface methodological approach for ...
  • Jacob, S.; Banerjee, R., (۲۰۱۶). Modeling and optimization of anaerobic ...
  • Jasni, A. B.; Kamyab, H.; Chelliapan, S.; Arumugam, N.; Krishnan, ...
  • Kainthola, J.; Kalamdhad, A. S.; Goud, V. V., (۲۰۱۸). Optimization ...
  • Kaminski, W.; Tomczak, E.; Tosik, P., (۲۰۱۵). Kinetics of azo ...
  • Kamyab, H.; Yuzir, M. A.; Riyadi, F. A.; Ostadrahimi, A.; ...
  • Kaur, A.; Sharma, S., (۲۰۱۷). Removal of heavy metals from ...
  • Kumar, P.S.; Joshiba, G.J.; Femina, C.C.; Varshini, P.; Priyadharshini, S.; ...
  • Lenin, S.M.; Kalyani, G.; Gokulan, R.; Ragunath, S.; Joga Rao, ...
  • Mortezaei, Y.; Aman, T.; Elyasi, S., (۲۰۱۸). High-rate anaerobic digestion ...
  • Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.S., ...
  • Nayagam, J.O.P.; Prasanna, K., (۲۰۲۱). Utilization of shell-based agricultural waste ...
  • Ohale, P.E.; Uzoh, C.F.; Onukwuli, O.D., (۲۰۱۷). Optimal factor evaluation ...
  • Orshansky, F.; Narkis, N., (۱۹۹۷). Characteristics of organics removal by ...
  • Rajasimman, M.; Babu, S. V.; Rajamohan, N., (۲۰۱۷). Biodegradation of ...
  • Rasouli, M.; Ajabshirchi, Y.; Mousavi, S.M.; Nosrati, M.; Yaghmaei, S., ...
  • Safari, M.; Abdi, R.; Adl, M.; Kafashan, J., (۲۰۱۸). Optimization ...
  • Sajeena, B.B.; Jose, P.P.; Madhu, G., (۲۰۱۴). Optimization of process ...
  • Sathish, S.; Vivekanandan, S., (۲۰۱۶). Parametric optimization for floating drum ...
  • Sodeifian, G.; Sajadian, S.A.; Ardestani, N.S., (۲۰۱۶). Evaluation of the ...
  • Taran, M.; Aghaie, E., (۲۰۱۵). Designing and optimization of separation ...
  • Tejada, T.C.; Villabona,O. Á.; Gonzalez Á.D., (۲۰۲۱). Adsorption of azo-anionic ...
  • Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; ...
  • Wu, J.S.; Liu, C.H.; Chu, K.H.; Suen, S.Y., (۲۰۰۸). Removal ...
  • Xin hui, D.; Srinivasakannan, C.; Qu, W.W.; Xin, W.; Jin-hui, ...
  • Yan, Y.; Xiang, B.; Yi, X.; Li, Y.; Jia, Q., ...
  • Yousif, N.; Cole, J.; John, C. R.; Diedrichsen, J.; Karl, ...
  • Zaghloul, M.S.; Hamza, R.A.; Iorhemen, O.T.; Tay, J.H., (۲۰۲۰). Comparison ...
  • Zhang, Y.; Huang, G.; An, C.; Xin, X.; Liu, X.; ...
  • نمایش کامل مراجع