Prediction of Silicon Direct Nitridation Kinetic By An Efficient and Simple Predictive Model Based on Group Method of Data Handling
محل انتشار: مجله علم مواد و مهندسی ایران، دوره: 17، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 171
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMSEI-17-1_008
تاریخ نمایه سازی: 1 اسفند 1401
چکیده مقاله:
In the present study, a soft computing method namely the group method of data handling (GMDH) is applied to develop a new and efficient predictive model for prediction of conversion percentage of silicon. A comprehensive database is obtained from experimental studies in literature. Several effective parameters like time, temperature, nitrogen percentage, pellet size and silicon particle size are considered. The performance of the model is evaluated through statistical analysis. Moreover, the silicon nitridation was performed in ۱۵۷۳ k and results were evaluated against model results for validation of the model. Furthermore, the performance and efficiency of the GMDH model is confirmed against the two most common analytical models. The most effective parameters in estimating the conversion percentage are determined through sensitivity analysis based on the Gamma Test. Finally, the robustness of the developed model is verified through parametric analysis.
کلیدواژه ها:
نویسندگان
E. Shahmohamadi
Iran University of Science and Technology
A. Mirhabibi
Iran University of Science and Technology
F. Golestanifard
Iran University of Science and Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :