Apply Optimized Tensor Completion Method by Bayesian CP-Factorization for Image Recovery
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 166
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COAM-6-1_001
تاریخ نمایه سازی: 30 بهمن 1401
چکیده مقاله:
In this paper, we are going to analyze big data (embedded in the digital images) with new methods of tensor completion (TC). The determination of tensor ranks and the type of decomposition are significant and essential matters. For defeating these problems, Bayesian CP-Factorization (BCPF) is applied to the tensor completion problem. The \textit{BCPF} can optimize the type of ranks and decomposition for achieving the best results. In this paper, the hybrid method is proposed by integrating BCPF and general TC. The tensor completion problem was briefly introduced. Then, based on our implementations, and related sources, the proposed tensor-based completion methods emphasize their strengths and weaknesses. Theoretical, practical, and applied theories have been discussed and two of them for analyzing big data have been selected, and applied to several examples of selected images. The results are extracted and compared to determine the method's efficiency and importance compared to each other. Finally, the future ways and the field of future activity are also presented.
کلیدواژه ها:
نویسندگان
Ali Shojaeifard
Department of Mathematics and Statistics, Faculty and Institute of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
Hamid Reza Yazdani
Department of Mathematics and Statistics, Faculty and Institute of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
Mohsen Shahrezaee
Department of Defense and Engineering, Imam Hossein Comprehensive University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :