Load Balancing Based on Statistical Model in Expert Cloud
محل انتشار: مجله مهندسی برق مجلسی، دوره: 13، شماره: 4
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 369
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-13-4_006
تاریخ نمایه سازی: 25 بهمن 1401
چکیده مقاله:
Expert Cloud is a new class of Cloud computing which enables the users to achieve their requirements from a collection containing experts and skills created by the human resources (HRs). The acquisition of these skills and experts from this collection is possible by using the Internet and Cloud computing concepts without consideration of the HRs location. The load balancing in cloud computing means equal load distribution among resources, virtual machines (VMs) and servers. The effective load distribution in a heterogeneous environment such as cloud is an important challenge. The increase in the number of users, the differences of request types and also different resources capabilities and capacities cause that some resources become overload and some others become idle. This paper presents a dynamic load balanced task scheduling algorithm in expert cloud. In this method, we utilize the genetic algorithm (GA) as a ranking for making distinction among the HRs capabilities. In our proposed method, we use interval estimation and specification matrix to allocate the HRs and also to determine the service rate. We model the load balancing and mapping process based on Simple Exponential Smoothing and Probability Theory. This statistical load balancing model allows us to allocate the HRs based on service rate and Poisson model. So, each task is delivered to the HR which is capable to execute it. The simulation results show that the expert cloud can reduce the execution and tardiness time and improve HR utilization. The cost of using resources as an effective factor is also observed.
کلیدواژه ها:
نویسندگان
Shiva Razzaghzadeh
Computer engineering department, Science and Research Branch, Islamic Azad University, Tehran, Iran
Ahmad Habibizad Navin
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Amir Masoud Rahmani
Computer Engineering department, Science and Research Branch, Islamic Azad University, Tehran, Iran
Mehdi Hosseinzadeh
Department of Computer engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :