آزمون دروغ سنجی بر اساس پردازش آشوبناک سیگنال الکتروانسفالوگرام مبتنی بر نگاشت بازرخداد فازی
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 389
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_PADSA-10-2_008
تاریخ نمایه سازی: 24 بهمن 1401
چکیده مقاله:
آزمون دانش گناهکار مبتنی بر سیگنال الکتروانسفالوگرام، یکی از پرکاربردترین روش های دروغ سنجی به شمار می رود. نگاشت بازرخداد به عنوان یکی از روش های پردازش آشوبناک در دروغ سنجی مورد استفاده قرار گرفته است. از جمله چالش های مهم این روش، انتخاب آستانه مناسب برای تعیین وقوع بازرخداد حالات سامانه در فضای فاز است که انتخاب نامناسب آن کارایی این روش را تحت تاثیر قرار می دهد. در این مقاله به منظور حل این چالش از نگاشت بازرخداد فازی استفاده شده است. این نگاشت، تک ثبت های سیگنال الکتروانسفالوگرام را به تصویر بافت خاکستری تبدیل می کند. سپس ویژگی های بافت تصویر بر اساس روش ماتریس رخداد هم زمان درجه خاکستری استخراج و با استفاده از مدل K-نزدیک ترین همسایگی طبقه بندی می شود. نتایج حاصل از طبقه بندی این بردار ویژگی با طول ۴ با صحت ۹۰ درصد بیانگر برتری این روش نسبت به روش متداول نگاشت بازرخداد با طول بردار ویژگی ۱۳ است. این کاهش بعد در بردار ویژگی منجر به افزایش سرعت آموزش، آزمون و تعمیم پذیری طبقه بند K-نزدیک ترین همسایگی به عنوان یک طبقه بند تنبل می شود. علاوه بر این، رویکرد پردازش تک ثبت مبتنی بر سوژه که در این مقاله درنظر گرفته شده است نیاز به وجود مجموعه داده ای از سوژه های مختلف را برطرف کرده و برای تشخیص راستگویی و دروغگویی سوژه صرفا به دادگان همان سوژه نیاز است.
کلیدواژه ها:
نویسندگان
سکینه رضوی
دانشجوی کارشناسی ارشد، دانشکده علوم و فناوری های نوین، دانشگاه سمنان، سمنان، ایران
امین جانقربانی
استادیار، دانشکده علوم و فناوری های نوین، دانشگاه سمنان، سمنان، ایران
محمدباقر خدابخشی
استادیار، دانشکده مهندسی پزشکی، دانشگاه صنعتی همدان، همدان، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :