Surrogate-Based Design Optimization of a H-Darrieus Wind Turbine Comparing Classical Response Surface, Artificial Neural Networks, and Kriging

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 134

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-16-4_006

تاریخ نمایه سازی: 19 بهمن 1401

چکیده مقاله:

Clean energy sources like wind energy have been receiving much attention, and great emphasis has been given to the design and optimization of horizontal axis wind turbines, but just as important are the vertical axis wind turbines that can be used for generating energy for small businesses, houses, and buildings. This article sought to study the optimal geometrical parameters of a H-Darrieus vertical axis wind turbine using surrogate-based optimization with three different types of surrogate models and compared them. Airfoil chord and thickness were chosen as the design variables and respective ranges set at ۰.۳۲-۰.۶ m and ۰.۰۴-۰.۱۶ m. All evaluations are carried out for a tip-speed ratio of ۱.۵. Three different surrogate models were used and compared, namely a quadratic polynomial response surface, an artificial neural network based on radial basis functions called Extreme Learning Machine and a Kriging interpolator. Surrogates were constructed based on an initial sample data distributed according to a full factorial design. A test set was designed to evaluate the accuracy of the surrogates. Both training and testing data sets were generated using ۲D CFD modeling to reduce computational cost. From the test set, Extreme Learning Machine surrogate showed the smallest RMSE of ۱۱.۲۴%, followed by Kriging, at ۱۷.۶۴%, and Response Surface of ۲۲.۱۷%. For the optimal designs the same pattern ensued, with optimal power coefficient overestimated by ۸.۷% for the response surface surrogate, followed by ۳.۱۲% and ۲.۱۷% for the Kriging interpolator and the Extreme Learning Machine, respectively. Power coefficient curves comparing the three optimal geometries from each surrogate were calculated and plotted. Optimal turbine obtained from Kriging surrogate optimization process resulted in a ۷.۹۲% increase in the Cp, whilst Extreme Learning Machine and Response Surface resulted in a ۷.۸۶% and ۴.۲۹% increase, respectively, all when compared to baseline CFD model. Concluding guidelines are that the quadratic polynomial response surface may not be the best alternative when dealing with complex non-linear relationships as typically present in VAWT simulations. Superior techniques such as Extreme Learning Machine and Kriging could be more suitable for this application.

نویسندگان

D. Cardoso Netto

Federal University of Itajubá, Itajubá, Minas Gerais, ۳۷۵۰۰-۹۰۳, Brazil

R. Ramirez Gustavo

Federal University of Itajubá, Itajubá, Minas Gerais, ۳۷۵۰۰-۹۰۳, Brazil

N. Manzanares Filho

Federal University of Itajubá, Itajubá, Minas Gerais, ۳۷۵۰۰-۹۰۳, Brazil

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmad, M., A. Shahzad, F. Akram, F. Ahmad and S. ...
  • ANP, Oil and NGL National Production in cubic meters. Available ...
  • Bianchini, A., F. Balduzzi, P. Bachant, G. Ferrara and L. ...
  • Bravo, R., S. Tullis and S. Ziada (۲۰۰۷). Performance testing ...
  • Cheng, B. and Y. Yao (۲۰۲۲). Design and optimization of ...
  • Chou, P. Y. (۱۹۴۵). On the velocity correlations and the ...
  • Davidov, B. I. (۱۹۶۱). on the Statistical Dynamics of an ...
  • Elsakka, M. M., D. B. Ingham, L. Ma, M. Pourkashanian, ...
  • Gosselin, R., G. Dumas and M. Boudreau (۲۰۱۶). Parametric study ...
  • GWEC, Global Wind Report ۲۰۲۱. Available at: <https://gwec.net/global-wind-report-۲۰۲۱/> ...
  • Access on: January ۱۴th, ۲۰۲۲ ...
  • Hansen, J. T., M. Mahak and I. Tzanakis (۲۰۲۱). Numerical ...
  • Harlow, F. H. and P. I. Nakayama (۱۹۶۸). Transport of ...
  • Hashem, I. and M. H. Mohamed (۲۰۱۷). Aerodynamic performance enhancements ...
  • Hashem, I. and B. Zhu (۲۰۲۱). Metamodeling-based parametric optimization of ...
  • Haykin, S. (۱۹۹۹). Neural Networks a comprehensive foundation. McMaster University. ...
  • Huang, G. and C. K. Siew (۲۰۰۴) Extreme Learning Machine: ...
  • Jang, H., Y. Hwang, I. Paek and S. Lim (۲۰۲۱). ...
  • Jones, D. R. (۲۰۰۱). A taxonomy of global optimization methods ...
  • Jones, W. P. and B. E. Launder (۱۹۷۲). The prediction ...
  • Kim, C. K., S. Ali, S. M. Lee and C. ...
  • Launder, B. E. and B. I. Sharma (۱۹۷۴). Application of ...
  • Lee, S. L. and S. Shin (۲۰۲۰). Wind turbine blade ...
  • Ma, N., H. Lei, Z. Han, D. Zhou, Y. Bao, ...
  • Manwell, J. F., J. G. McGowan and A. L. Rogers ...
  • Meana-Fernández, A., L. Díaz-Artos, J. M. Fernández Oro and S. ...
  • Montgomery, D. G. (۲۰۰۹). Design and Analysis of Experiments. Arizona ...
  • Oh, S. (۲۰۲۰). Comparison of a response surface method and ...
  • Pan, L., H. Xiao, Y. Zhang and Z. Shi (۲۰۲۰). ...
  • Raul, V. and L. Leifsson (۲۰۲۱). Surrogate-based aerodynamic shape optimization ...
  • Rezaeiha, A., I. Kalkman and B. Blocken (۲۰۱۷). CFD simulation ...
  • Wilcox, D. C. (۲۰۰۶). Turbulence Modeling for CFD. DCW Industries, ...
  • نمایش کامل مراجع