Fourth-order numerical method for the Riesz space fractional diffusion equation with a nonlinear source term

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 132

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-9-3_007

تاریخ نمایه سازی: 15 بهمن 1401

چکیده مقاله:

‎This paper aims to propose a high-order and accurate numerical scheme for the solution of the nonlinear diffusion equation with Riesz space fractional derivative. To this end, we first discretize the Riesz fractional derivative with a fourth-order finite difference method, then we apply a boundary value method (BVM) of fourth-order for the time integration of the resulting system of ordinary differential equations. The proposed method has a fourth-order of accuracy in both space and time components and is unconditionally stable due to the favorable stability property of BVM. The numerical results are compared with analytical solutions and with those provided by other methods in the literature. Numerical experiments obtained from solving several problems including fractional Fisher and fractional parabolic-type sine-Gordon equations show that the proposed method is an efficient algorithm for solving such problems and can arrive at the high-precision.

کلیدواژه ها:

‎Compact finite difference method‎ ، ‎Boundary value methods‎ ، ‎Riesz space fractional derivatives‎ ، ‎Unconditional stability‎ ، ‎Diffusion equation‎

نویسندگان

- -

Department of Applied Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Abbaszadeh, Error estimate of second-order finite difference scheme for ...
  • P. Amodio, F. Mazzia, and D. Trigiante, Stability of some ...
  • M. R. Azizi and A. Khani, Sinc operational matrix method ...
  • L. Brugnano and D. Trigiante, Solving differential problems by multistep ...
  • L. Brugnano and D. Trigiante, Stability properties of some BVM ...
  • L. Brugnano and D. Trigiante,Boundary value methods: the third way ...
  • C. Celik and M. Duman,Crank-Nicolson method for the fractional diffusion ...
  • J. Chen, F. Liu, I. Turner, and V. Anh, The ...
  • M. Dehghan and A. Mohebbi,High-order compact boundary value method for ...
  • M. Dehghan and A. Mohebbi, The use of compact boundary ...
  • M. Dehghan and M. Abbaszadeh, An efficient technique based on ...
  • M. Dehghan, M. Abbaszadeh, and W. Deng, Fourth-order numerical method ...
  • Z. P. Hao, Z. Z. Sun, and W. R. Cao,A ...
  • Z. Hao, K. Fan, W. Cao, and Z. Sun, A ...
  • F. Iavernaro and F. Mazzia, Convergence and stability of multistep ...
  • H. L. Liao, P. Lyu, and S. Vong, Second-order BDF ...
  • F. Liu, V. Anh, and I. Turner, Numerical solution of ...
  • A. Mohebbi, On the split-step method for the solution of ...
  • K. B. Oldham and J. Spanier, The Fractional Calculus: Theory ...
  • I. Podulbny, Fractional differential equations, New York: Academic Press; ۱۹۹۹ ...
  • A. Saadatmandi and M. Dehghan, A tau approach for solution ...
  • A. Saadatmandi and M. A. Darani, The operational matrix of ...
  • H. Wang, C. Zhang, and Y. Zhou, A class of ...
  • H. Zhang and F. Liu, Numerical simulation of the Riesz ...
  • Y. X. Zhang and H. F. Ding, Improved matrix transform ...
  • Y. Zhou and Z. Luo, A Crank-Nicolson finite difference scheme ...
  • S. Yang, Finite difference method for Riesz space fractional diffusion ...
  • نمایش کامل مراجع