Collocation method based on radial basis functions via symmetric variable shape parameter for solving a particular class of delay differential equations

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 197

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-10-1_010

تاریخ نمایه سازی: 9 بهمن 1401

چکیده مقاله:

In this article, we use the collocation method based on the radial basis functions with symmetric variable shape parameter (SVSP) to obtain numerical solutions of neutral-type functional-differential equations with proportional delays. In this method, we control the absolute errors and the condition number of the system matrix through the program prepared with Maple ۱۸.۰ by increasing the number of collocation points that have a direct effect on the defined shape parameter. Also, we present the tables of the rate of the convergence (ROC) to investigate and show the convergence rate of this method compared to the RBF method with constant shape parameter. Several examples are given to illustrate the efficiency and accuracy of the introduced method in comparison with the same method with the constant shape parameter (CSP) as well as other analytical and numerical methods. Comparison of the obtained numerical results shows the considerable superiority of the collocation method based on RBFs with SVSP in accuracy and convergence over the collocation method based on the RBFs with CSP and other analytical and numerical methods for delay differential equations (DDEs).

نویسندگان

Asadollah Torabi Giklou

Department of Mathematics, Guilan Science and Research Branch, Islamic Azad University, Rasht, Iran.

Mojtaba Ranjbar

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

Mahmoud Shafiee

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.

Vahid Roomi

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Adibi and J. Es’haghi, Numerical solution for biharmonic equation ...
  • M. D. Buhmann, Radial basis functions, Acta Numerica, ۹ (۲۰۰۰), ...
  • M. Chamek, T. M. Elzaki and N. Brik, Semi-analytical solution ...
  • X. Chen and L. Wang, The variational iteration method for ...
  • S. Davaeifar and J. Rashidinia, Solution of a system of ...
  • M. Dehghan and A. Shokri, Numerical solution of the nonlinear ...
  • M. Dehghan and M. Tatari, Determination of a control parameter ...
  • O. Farkhondeh Rouz, Preserving asymptotic mean-square stability of stochastic theta ...
  • R. Franke, Scattered data interpolation: tests of some methods, Math. ...
  • F. Ghomanjani and M. H. Farahi, The Bezier Control Points ...
  • A. Golbabai, M. Mammadova, and S. Seifollahi, Solving a system ...
  • A. Golbabai and H. Rabiei, Hybrid shape parameter strategy for ...
  • S. Gumgum, N. B. Savasanerial, O. K. Kurkcu, and M. ...
  • R. L. Hardy, Multiquadric equations of topography and other irregular ...
  • A. Isah and C. Phang, Operational matrix based on Genocchi ...
  • E. Ishiwata and Y. Muroya, Rational approximation method for delay ...
  • E. Ishiwata, Y. Muroya, and H. Brunner, A super-attainable order ...
  • E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications ...
  • E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications ...
  • E. J. Kansa and R. E. Carlson, Improved accuracy of ...
  • E. J. Kansa and Y. C. Hon, Circumventing the ill-conditioning ...
  • A. J. Khattak, S. I. A. Tirmizi, and S. U. ...
  • L. Khodayari and M. Ranjbar, A Numerical Study of RBFs-DQ ...
  • O. K. Kurkcu, E. Aslan, and M. Sezer, A novel ...
  • N. Mai-Duy, Solving high order ordinary differential equations with radial ...
  • M. Nouri M, Solving Ito integral equations with time delay ...
  • K. Parand, S. Abbasbandy, S. Kazem, and A. Rezaei, Comparison ...
  • M. Ranjbar, H. Adibi and M. Lakestani, Numerical solution of ...
  • M. Ranjbar, A new variable shape parameter strategy for Gaussian ...
  • J. Rashidinia and M. Khasi, Stable Gaussian radial basis function ...
  • U. K. Sami and A. Ishtiaq, Application of Legendre spectral-collocation ...
  • S. A. Sarra and D. Sturgill, A random variable shape ...
  • A. Torabi Giklou, M. Ranjbar, M. Shaffee, and V. Roomi, ...
  • W. Wang and S. Li, On the one-leg θ-methods for ...
  • W. Wang, Y. Zhang, and S. Li, Stability of continuous ...
  • S. Xiang, K. M. Wang, Y. T. Ai, Yun-dong Sha, ...
  • L. Xueqin and G. Yue, The RKHSM for solving neutral ...
  • S. Yalcinbas, M. Aynigul, and M. Sezer, A collocation method ...
  • S. Yuzbasi and M. Karacayir, A Galerkin-Like Approach to Solve ...
  • S. Yuzbasi, N. Sahin, and M.Sezer, A Bessel Polynomial Approach ...
  • S. Yuzbasi, N. Sahin, and M. Sezer, Bessel Collocation Method ...
  • S. Yuzbasi and M. Sezer, An exponential approximation for solutions ...
  • نمایش کامل مراجع