A numerical scheme for solving time-fractional Bessel differential equations

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 246

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-10-4_018

تاریخ نمایه سازی: 9 بهمن 1401

چکیده مقاله:

The object of this paper devotes on offering an indirect scheme based on time-fractional Bernoulli functions in the sense of Rieman-Liouville fractional derivative which ends up to the high credit of the obtained approximate fractional Bessel solutions. In this paper, the operational matrices of fractional Rieman-Liouville integration for Bernoulli polynomials are introduced. Utilizing these operational matrices along with the properties of Bernoulli polynomials and the least squares method, the fractional Bessel differential equation converts into a nonlinear system of algebraic. To solve these nonlinear algebraic equations which are a prominent the problem, there is a need to employ Newton’s iterative method. In order to elaborate the study, the synergy of the proposed method is investigated and then the accuracy and the efficiency of the method are clearly evaluated by presenting numerical results.

کلیدواژه ها:

Fractional-order differential equation ، Caputo and Rieman-Liouville fractional derivative and integral ، Convergence analysis ، Bernoulli functions ، Least square method

نویسندگان

Saber Tavan

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Mohammad Jahangiri Rad

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Ali Salimi Shamloo

Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

Yaghoub Mahmoudi

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • O. Abdulaziz, I. Hashim, and S. Momani, solving sestem of ...
  • R. S. Adguzel, U. Aksoy, E. Karapinar, and I. M. ...
  • S. A. Alavi, A. Haghighi, A. Yari, and F. Soltanian, ...
  • A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations ...
  • E. Ashpazzadeh, M. Lakestani, and A. Fatholahzadeh, Spectral Methods Combined ...
  • A. H. Bhrawy , M. M. Tharwat, and A. Yildirim, ...
  • A. H. Bhrawy and M. A. Zaky, A shifted fractional-order ...
  • V. Daftardar-geiji and H. Jafari, Adomian decomposition:a tool for solving ...
  • E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, ...
  • A. Gokdogan, E. Unal, and E. Celik, Conformable Fractional Bessel ...
  • N. Haddadi, Y. Ordokhani, and M. Razzaghi, Optimal control of ...
  • M. S. Hashemi, E. Ashpazzadeh, M. Moharrami, and M. Lakestani, ...
  • I. Hashim, O. Abdulaziz, and S. Momani, Homotopy analysis method ...
  • S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order legendre functions ...
  • F. Kh. Keshi, B. P. Moghaddam, and A. Aghili, A ...
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, ...
  • B. G. Korenev, Bessel Functions and their Applications, London; New ...
  • E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and ...
  • S. Kumar, D. Kumar, S. Abbasbandy, and M. M. Rashidi, ...
  • Y. Li and N. Sun, Numerical solution of fractional differential ...
  • A. Lotfi, M. Dehghan, and S. A. Yousefi, A nemerical ...
  • J. A. T. Machado and B. P. Moghaddam, A Robust ...
  • M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided ...
  • K. S. Miller and B. Ross, An Introduction to the ...
  • S. Mockary, A. Vahidi, and E. Babolian, An efcient approximate ...
  • B. P. Moghaddam and J. A. T. Machado, A computational ...
  • B. P. Moghaddam and J. A. T. Machado, Extended Algorithms ...
  • B. P. Moghaddam, J. A. T. Machado and H. Behforooz, ...
  • M. A. Moghaddam, Y. E. Tabriz, and M. Lakestani, Solving ...
  • P. Mokhtary, F. GHoreishi, and H. M. Srivastava, The Muntz-Legendre ...
  • S. Momani and K. Al-Khaled, Numerical solutions for systems of ...
  • Z. Odibat and S. Momani, Application of variational iteration method ...
  • W. Okrasinski and L. Plociniczak, A not on fractional equation ...
  • I. Podlubny, Fractional Differential Equations, Academic Prees, San Diego, CA, ...
  • I. Podlubny, Fractional differential equations: An introduction to fractionl derivatives, ...
  • P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli wavelets ...
  • M. Rivero, L. Rodriguez-Germa, and J. J. Trujillo, Linear fractional ...
  • G. Simmons, Differential Equations: With Applications and Historical Notes, New ...
  • S. C. Shiralashetti and A. B. Deshi, An efficient Haar ...
  • E. Tohidi, A. H. Bhrawy, and Kh. Erfani, A collocation ...
  • G. Watson, A Treatise on the Theory of Bessel Functions, ...
  • SH. Yaghoobi, B. P. Moghaddam, and K. Ivaz, An efficient ...
  • SH. Yaghoobi, B. P. Moghaddam, and K. Ivaz, A numerical ...
  • نمایش کامل مراجع