An interval chaos insight to iterative decomposition method for Rossler differential equation by considering stable uncertain coefficients

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 209

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-10-4_019

تاریخ نمایه سازی: 9 بهمن 1401

چکیده مقاله:

Generally, in most applications of engineering, the parameters of the mathematical models are considered deterministic. Although, in practice, there are always some uncertainties in the model parameters; these uncertainties may be made wrong representation of the mathematical model of the system. These uncertainties can be generated from different reasons like measurement error, inhomogeneity of the process, chaotic behavior of systems, etc. This problem leads researchers to study these uncertainties and propose solutions for this problem. The iterative analysis is a method that can be utilized to solve these kinds of problems. In this paper, a new combined method based on interval chaotic and iterative decomposition method is proposed. The validation of the proposed method is performed on a chaotic Rossler system in stable Intervals. The simulation results are applied on ۲ practical case studies and the results are compared with the interval Chebyshev method and RungeKutta method of order four (RK۴) method. The final results showed that the proposed method has a good performance in finding the confidence interval for the Rossler models with interval uncertainties; the results also showed that the proposed method can handle the wrapping effect in a better manner to sharpen the range of non-monotonic interval.

نویسندگان

Majid Abbasi

Department of Electrical Engineering, Tafresh University, Tafresh ۳۹۵۱۸-۷۹۶۱۱, Iran.

Mehdi Ramezani

Departments of Mathematics, Tafresh University, Tafresh ۳۹۵۱۸-۷۹۶۱۱, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • O. Abdulaziz, N. F. M. Noor, I. Hashim, and M. ...
  • H. N. Agiza and M. T. Yassen, Synchronization of Rossler ...
  • E. Celik, M. Bayram, and T. Yelolu, Solution of Differential-Algebraic ...
  • Sh. Chen and Su. Huan, and J. Wu, Interval optimization ...
  • DJ. Evans and K. Raslan, The Adomian decomposition method for ...
  • G. Gaxiola, J. A. Santiago, and J. Ruiz de Chvez, ...
  • S. M. Goh, M. S. M. Noorani, and I. Hashim, ...
  • I. Hashim, M. S. M. Noorani, R. Ahmad, S. A. ...
  • M. M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Applied ...
  • H. Jafari and V. Daftardar Gejji, Solving a system of ...
  • Zhu. Jiandong and Yu. Ping Tian, Stabilizing periodic solutions of ...
  • B. Lazhar, A. Majid Wazwaz, and R. Rach, Dual solutions ...
  • D. Lesnic, Convergence of Adomian decomposition method: periodic temperatures, Comput. ...
  • M. Mossa Al-Sawalha, M. S. M. Noorani, and I. Hashim, ...
  • K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics ...
  • N. Razmjooy and M. Ramezani, Analytical Solution for Optimal Control ...
  • S. Tangaramvong, F. Tin-Loi, C. Yang, and W. Gao, Interval ...
  • M. Tatari, M. Dehghan, and M. Razzaghi, Application of the ...
  • D. B. West and D. B. Shmoys, Recognizing graph with ...
  • J. Wu, J. Gao, Z. Luo, and B. T. Robust, ...
  • نمایش کامل مراجع