سال انتشار: 1390
محل انتشار: هفتمین کنفرانس ماشین بینایی و پردازش تصویر ایران
کد COI مقاله: ICMVIP07_086
زبان مقاله: انگلیسیمشاهد این مقاله: 1,322
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
متن کامل (فول تکست) این مقاله منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد.
مشخصات نویسندگان مقاله Object Tracking Using Improved CAMShiftAlgorithm Combined with Motion Segmentation
چکیده مقاله:
Continuously adaptive mean-shift(CAMShift) is anefficient and light-weight tracking algorithm developed based onmean-shift. While color based CAMShift is suitable for trackingtargets in simple cases, it fails to track objects in more complexsituations. In this paper we review our low cost extension toimprove the traditional CAMShift algorithm. Combining theoriginal algorithm with a motion segmentation phase, weproposed an improved CAMShift algorithm to cope withCAMShift`s tracking problems. We evaluated the efficiency ofour approach by comparing our tracking results with thetraditional algorithm`s results in several cases
کلیدواژه ها:
Target tracking, CAMShift, motion segmentation,mean-shift, probability distribution image
کد مقاله/لینک ثابت به این مقاله
برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:https://civilica.com/doc/159120/
نحوه استناد به مقاله:
در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:Emami, Ebrahim و Fathy, Mahmood,1390,Object Tracking Using Improved CAMShiftAlgorithm Combined with Motion Segmentation,هفتمین کنفرانس ماشین بینایی و پردازش تصویر ایران,تهران,,,https://civilica.com/doc/159120
در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1390, Emami, Ebrahim؛ Mahmood Fathy)
برای بار دوم به بعد: (1390, Emami؛ Fathy)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.
مدیریت اطلاعات پژوهشی
اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.
علم سنجی و رتبه بندی مقاله
مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.
مقالات مرتبط جدید
- یک روش یادگیری عمیق ترکیبی به منظور تخمین سن بیولوژیکی مغز برای کمک به تشخیص بیماری با استفاده از تصاویر MRI
- ارائه یک روش موثردردسته بندی نماهای اکوکاردیوگرافی بااستفاده از یادگیری انتقالی
- مطالعه اثر نویز گوسی و ضربه روی همجوشی ارتقا یافته به کمک سوپررزولوشن برروی تصاویر با فوکوس های چندگانه
- بازشناسی کلمات پویای مجزای زبان اشاره فارسی با استفاده از حسگر کینکت
- طبقه بندی بافت های تومور در تصاویر بافت شناسی سرطان استخوان با استفاده از PLS-LDA
مقالات فوق اخیرا در حوزه مرتبط با این مقاله به سیویلیکا افزوده شده اند.
به اشتراک گذاری این صفحه
اطلاعات بیشتر درباره COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.