Stability Analysis of Fractional Order Mathematical Model of Leukemia
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 146
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMAC-11-1_002
تاریخ نمایه سازی: 27 دی 1401
چکیده مقاله:
In this paper, we propose a fractional order model of leukemia in terms of a system of ordinary differential equations with the Caputo derivative that provides convenience for initial conditions of the differential equations. Firstly, we prove the global existence, positivity, and boundedness of solutions. The local stability properties of the equilibrium are obtained by using fractional Routh-Hurwitz stability criterion. Furthermore, a suitable Lyapunov functions are constructed to prove the global stability of equilibrium. Finally, numerical simulation of the model are presented to illustrate our theoretical results for different choices of fractional order of derivative α. Then, we can observe the impact of fractional derivative α on the evolution of the model states.
کلیدواژه ها:
نویسندگان
Lahoucine Boujallal
Department of Mathematics, Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco