Managing the uncertainty: from probability to fuzziness, neutrosophy and soft sets

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 217

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TFSS-1-2_006

تاریخ نمایه سازی: 27 دی 1401

چکیده مقاله:

The present paper reviews and compares the main theories reported in the literature for managing the existing real life uncertainty by listing their advantages and disadvantages. Starting with a comparison of the bivalent logic (including probability) and fuzzy logic, proceeds to a brief description of the primary generalizations of fuzzy sets (FSs) including interval valued FSs, type-۲ FSs, intuitionistic FSs, neutrosophic sets, etc. Alternative theories related to fuzziness are also examined including grey system theory, rough sets and soft sets. The conclusion obtained at the end of this discussion is that there is no ideal model for managing the uncertainty; it all depends upon the form, the available data and the existing knowledge about the problem under solution. The combination of all the existing models, however, provides a sufficient framework for efficiently tackling several types of uncertainty appearing in real life.

نویسندگان

Michael Voskoglou

Applied Mathematics-Technological Applications- Graduate TEI opf Westyern Greece- Patras- Greece

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • K. T. Atanassov, Intuitionistic Fuzzy sets, Fuzzy Sets and Systems, ...
  • Black, M., Vagueness, Phil. of Science, ۴ (۱۹۳۷) ۴۲۷-۴۵۵. Reprinted ...
  • S. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis ...
  • B. C. Cuong, Picture Fuzzy sets, Journal of Computer Science ...
  • F. Dernoncourt, Fuzzy logic: Between human reasoning and Artificial Intelligence, ...
  • J. Deng, Introduction to grey system theory, The Journal of ...
  • D. Dubois and H. Prade, Interval-Valued Fuzzy Sets, Possibility Theory ...
  • S. Haack, Do we need fuzzy logic? Int. J. of ...
  • J.-S. R. Jang, ANFIS: adaptive network-based fuzzy inference system, IEEE ...
  • E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge ...
  • A. Kaufmann and M. Gupta, Introduction to Fuzzy Arithmetic, Van ...
  • A. Kharal and B. Ahmad, Mappings on Soft Classes, New ...
  • G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty ...
  • S. Korner, Laws of Thought, In Encyclopedia of Philosophy; Mac ...
  • B. Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic, ...
  • B. Kosko, Fuzziness Vs Probability, Int. J. of General Systems, ...
  • S. F. Liu and Y. Lin. (Eds.), Advances in Grey ...
  • P. K. Maji, R. Biswas, and A. R. Roy, Soft ...
  • E. H. Mamdani and S. Assilian, An experiment in linguistic ...
  • J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and ...
  • J. M. Mendel, Fuzzy Sets for Words: a New Beginning, ...
  • D. Molodtsov, Soft Set Theory-First Results, Computers and Mathematics with ...
  • R. A. Moore, R. B. Kearfort and M. J. Clood, ...
  • D. Mumford, The Dawing of the Age of Stochasticity, in ...
  • A. P. Paplinski, Neuro-Fuzzy Computing, Lecture Notes, Monash University, Australia, ...
  • Z. Pawlak, Rough Sets: Aspects of Reasoning about Data, Kluer ...
  • D. Ramot, R. Milo, M. Friedman and A. Kandel, Complex ...
  • F. Smarandache, Neutrosophy/Neutrosophic probability, set, and logic, Proquest, Michigan, USA, ...
  • F. Smarandache, Indeterminancy in Neutrosophic Theories and their Applications, International ...
  • M. Sugeno, Industrial applications of fuzzy control, Elsevier Science Pub. ...
  • ‎B‎. ‎K‎. ‎Tripathy and K‎. ‎R‎. ‎Arun‎, ‎Soft Sets and ...
  • V. Torra and Y. Narukawa, On hesitant fuzzy sets and ...
  • E. Van Broekhoven, and B. De Baets, Fast and accurate ...
  • M. Gr. Voskoglou, Finite Markov Chain and Fuzzy Logic Assessment ...
  • M. Gr. Voskoglou, Methods for Assessing Human-Machine Performance under Fuzzy ...
  • M. Gr. Voskoglou, Fuzzy Control Systems, WSEAS Transactions on Systems, ...
  • M. Gr. Voskoglou, A Combined Use of Soft Sets and ...
  • I. G. Umbers and P. J. King, An analysis of ...
  • R. R. Yager, Pythagorean fuzzy subsets, in Proceedings of Joint ...
  • L. A. Zadeh, Fuzzy Sets, Information and Control, ۸ (۱۹۶۵), ...
  • L. A. Zadeh, Outline of a new approach to the ...
  • L. A. Zadeh, The Concept of a Linguistic Variable and ...
  • L. A. Zadeh, Fuzzy logic=computing with words, IEEE Trans. on ...
  • Z. Zhang and Z. Hu, Extension of TOPSIS to Multiple ...
  • نمایش کامل مراجع