Cloud Computing for Improving Healthcare System during COVID-۱۹ Pandemic
محل انتشار: فصلنامه ادوات مخابراتی، دوره: 11، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 181
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TDMA-11-2_006
تاریخ نمایه سازی: 26 دی 1401
چکیده مقاله:
Recently, cloud computing has emerged as one of the most promising technologies in the healthcare industry, particularly during the coronavirus (COVID-۱۹) pandemic. In this pandemic, the volume of data generated from various sources is increasing which is needs novel technologies for data storage systems, and storage mechanisms. Cloud computing is considered an unsung hero in the healthcare context which provides new services in a simple, cost-efficient model. Furthermore, it can obtain the healthcare data from various sources, mixing, and evaluating the data in real-time, and allows physicians to access patient records at any place and anytime. During the COVID-۱۹ pandemic, the request for online services has been growing which shifts working patterns towards working at home as a protective measure in order to prevent the virus. Since the development of cloud computing in healthcare is happening at fast rates, it has expected that a key part of the healthcare services into transfer onto the cloud to improve outcomes of healthcare service. However, health cloud applications may have security risks, raise the awareness of users about the threats when using unsecured devices may decrease these risks the present paper discusses the concept of cloud computing, its role in the healthcare system by highlighting the COVID-۱۹ pandemic as well as its challenges in the healthcare system.
کلیدواژه ها:
نویسندگان
Seyedeh Maryam Shahrokhi
Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :