ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

Building detection using hyperspectral Images by Support Vector Machines

سال انتشار: 1391
کد COI مقاله: SASTECH06_044
زبان مقاله: انگلیسیمشاهده این مقاله: 1,331
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 7 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Building detection using hyperspectral Images by Support Vector Machines

D Akbari - Remote Sensing Division, Surveying and Geomatics Engineering Department,College of Engineering, University of Tehran, Tehran, Iran
M.R. Saradjian
M Moradizadeh

چکیده مقاله:

Building detection is one of the important applications in processing hyperspectral images. In order to detect complete and precise building information from hyperspectral data, advanceddata analysis methods are required. Algorithms based on spectral-identification are sensitive to spectral variability and noise in acquisition. In most cases, the spatial distributions and spectral signature are unknown, so each pixel is separately examined and if it significantly differs fromthe background, it is regarded as an object. On the other hand, there are many classic (e.g. Maximum Likelihood (ML)) and non-classic (e.g. Modified Spectral Angle Similarity (MSAS) as a Deterministic and Adaptive Coherence Estimator (ACE), Covariance-based Matched Filter Measure (CMFM) as sub-pixel approach) algorithms for building detection. In this study, first we propose a theoretical discussion aimed at understanding and assessing the potentialities of MLC, MSAS, ACE, CMFM algorithms. These algorithms work only based on spectral image data. In order to evaluate the detection algorithm based on hyper-dimensional feature spaces, Support Vector Machines (SVM) has been implemented which in the case of building detection, it may be regarded as a new application. The study includes accuracy assessment of effectiveness of SVM with respect to mentioned conventional algorithms regarding the performance indicators. The experiments on the building detection application, using three CASI hyper-spectral images taken from an urban area allow concluding that, SVM is a suitable and effective alternative to conventional detection algorithms.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا SASTECH06_044 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/158931/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Akbari, D and Saradjian, M.R. and Moradizadeh, M,1391,Building detection using hyperspectral Images by Support Vector Machines,6th Symposium on Advances in Science and Technology (5thsastech,https://civilica.com/doc/158931

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1391, Akbari, D؛ M.R. Saradjian and M Moradizadeh)
برای بار دوم به بعد: (1391, Akbari؛ Saradjian and Moradizadeh)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 70,017
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی