Physical model simulation of block caving in jointed rock mass

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 288

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMGE-56-4_007

تاریخ نمایه سازی: 21 دی 1401

چکیده مقاله:

Incorrect estimation of undercut dimensions in the block caving method can lead to the cessation of caving operations and loss of a large portion of deposits. Numerical modeling is one of the methods for determining the minimum caving span. Numerical and physical modeling methods are useful for an accurate understanding of caving operations. Accordingly, this research focused on investigating the performance of physical and numerical modeling in determining the effects of depth and joint orientation on the minimum required caving span for the initiation and propagation of caving. The physical model was made with ۱.۵*۱.۵ square meter dimensions and consisted of travertine blocks with ۴*۴ square centimeter dimensions. In addition, joints were modeled with dips of ۰, ۹۰, ۴۵, ۱۳۵, ۳۰, and ۱۲۰ degrees. The physical model could simulate ground stress conditions to great depths and show the behavior of the jointed rock mass in a two-dimensional space. Further, by capturing this behavior, it was possible to compare its result with UDEC software. The results demonstrated that the number of falling blocks and the height of the caving increased by increasing the dip. Furthermore, the formation of arches due to high horizontal stress stops the caving, which will occur again with the increasing span. Although the horizontal stresses and geometrical properties of the joints affect the shape of the caving area, its shape largely follows the dip and orientation of the rock mass joints. Poor draw control causes caved ore columns, which can lead to the formation of a stable arc. Finally, the height of the caved back increases in each span by increasing the depth while decreasing the dip of the joints.

نویسندگان

Behnam Alipenhani

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

Hassan Bakhshandeh Amnieh

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abbas Majdi

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Laubscher, D. (۲۰۰۰). Cave Mining Handbook ...
  • Chitombo, G. P. (۲۰۱۰). Cave mining: ۱۶ years after Laubscher's ...
  • Rice, G. S. (۱۹۳۴). Ground movement from mining in Brier ...
  • Panek, L. A. (۱۹۸۴). Subsidence in undercut-cave operations, subsidence resulting ...
  • Carlson, G., and Golden, R. (۲۰۰۸, June). Initiation, Growth, Monitoring, ...
  • Beck, D., Sharrock, G., and Capes, G. (۲۰۱۱). A coupled ...
  • Someehneshin, J., Oraee-Mirzamani, B., and Oraee, K. (۲۰۱۵). Analytical model ...
  • Mahtab, M. A., and Dixon, J. D. (۱۹۷۶). Influence of ...
  • McMahon, B. K., and Kendrick, R. F. (۱۹۷۷). Predicting the ...
  • Carter P. G. (۲۰۱۱). Selection Process for Hard Rock Mining. ...
  • Laubscher, D. H. (۱۹۹۰). A geomechanics classification system for the ...
  • Mawdesley, C., Trueman, R., and Whiten, W. J. (۲۰۰۱). Extending ...
  • Stewart, S. B. V., and Forsyth, W. W. (۱۹۹۵). The ...
  • Trueman, R., Mikula, P., Mawdesley, C. A., and Harries, N. ...
  • Mawdesley, C. A. (۲۰۰۲). Predicting rock mass cavability in block ...
  • Tollenaar, R. N. (۲۰۰۸). Characterization of discrete fracture networks and ...
  • Lorig, L. J., Board, M. P., Potyondy, D. O., and ...
  • Brown, E T. (۲۰۰۳). Block Caving Geo-mechanics. The International Caving ...
  • Gilbride, L. J., Free, K. S., and Kehrman, R. (۲۰۰۵, ...
  • Kalenchuk, K. S., McKinnon, S., and Diederichs, M. S. (۲۰۰۸). ...
  • Xie, Y. S., and Zhao, Y. S. (۲۰۰۹). Numerical simulation ...
  • Sharrock, G., Vakili, A., Duplancic, P., and Hastings, N. (۲۰۱۱). ...
  • Gao, F., Stead, D., and Coggan, J. (۲۰۱۴). Evaluation of ...
  • Rafiee, R., Ataei, M., KhalooKakaie, R., Jalali, S. E., Sereshki, ...
  • Song, Z., and Konietzky, H. (۲۰۱۹). A particle-based numerical investigation ...
  • Wang, J., Wei, W., Zhang, J., Mishra, B., and Li, ...
  • Alipenhani, B., Majdi, A., and Bakhshandeh Amnieh, H. (۲۰۲۲). Determination ...
  • Kang, H., Li, J., Yang, J., and Gao, F. (۲۰۱۷). ...
  • McNearny, R. L., and Abel Jr, J. F. (۱۹۹۳, April). ...
  • Carmichael. P. and Hebblewhite. B. (۲۰۱۲). An investigation into semi-intact ...
  • Cumming-Potvin, D., Wesseloo, J., Jacobsz, S. W., and Kearsley, E. ...
  • Jacobsz, S. W., Kearsley, E. P., Cumming-Potvin, D., and Wesseloo, ...
  • Bai, Q., Tu, S., and Wang, F. (۲۰۱۹). Characterizing the ...
  • Physical modelling of caving propagation process and damage profile ahead of the cave-back [مقاله ژورنالی]
  • Rafiee, R., Ataei, M., KhaloKakaie, R., Jalali, S. E., and ...
  • Azadmehr, A., and Jalali, S. M. E. (۲۰۱۷). Assessment of ...
  • Rafiee, R., Ataei, M., Khalokakaie, R., Jalali, S. M. E., ...
  • Mohammadi, S., Ataei, M., Kakaie, R., Mirzaghorbanali, A., and Aziz, ...
  • Castro, R., Gómez, R., Pierce, M., & Canales, J. (۲۰۲۰). ...
  • Bahaaddini, M., Sharrock, G., Hebblewhite, B. K., & Mitra, R. ...
  • Bandis, S. C., Lumsden, A. C., & Barton, N. R. ...
  • Brady, B. H., & Brown, E. T. (۲۰۰۶). Rock mechanics: ...
  • Weishen, Z., Yong, L., Shucai, L., Shugang, W., & Qianbing, ...
  • Fuenkajorn, K., & Phueakphum, D. (۲۰۱۰). Physical model simulation of ...
  • Vyazmensky, A., Elmo, D., and Stead, D. (۲۰۱۰). Role of ...
  • نمایش کامل مراجع