Gastric Cancer Survival Analysis: Applying the Bayesian Mixture Cure Rate Frailty Models

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 183

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JKMU-29-1_012

تاریخ نمایه سازی: 19 دی 1401

چکیده مقاله:

Background: Bayesian mixture cure rate frailty model is a model used in survival analysis by controlling frailty when the fraction of cured individuals exists. The present study was performed as the first systematic review in survival analysis with cure fraction. The aim of this systematic review was to study and evaluate the related studies on Bayesian mixture cure rate frailty model. Also, this model was used to demonstrate its importance and applicability in determining the variables affecting the survival of patients with gastric cancer.Methods: This systematic review was done based on the PRISMA guideline by considering related searching keywords in PubMed, Scopus, Science Direct, Web of Science, and Google Scholar. Also, Bayesian mixture cure rate frailty model was used to analyze gastric cancer data.Results: In the beginning, ۸۸۲ studies related to survival analysis of cure rate model were found. Finally, by reading the full-text, only ۴ related studies were found based on the inclusion and exclusion criteria. In these studies, semi-parametric models and parametric model with Weibull distribution were used for time-to-event data. Also, based on the results of the model, significant and affective variables on the survival of patients with gastric cancer were found.Conclusion: According to the results of this study, in the cure model, choice of proper distribution for the frailty variable and baseline distribution can influence the results. It was also found that place of residence, chemotherapy, morphology, and metastasis are effective variables on survival of patients with gastric cancer.

کلیدواژه ها:

نویسندگان

Ali Karamoozian

Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran & Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

Mohammad Reza Baneshi

Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran

Abbas Bahrampour

Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Cancho VG, de Castro M, Rodrigues J. A bayesian analysis ...
  • Hoseini M, Bahrampour A, Mirzaee M. Comparison of weibull and ...
  • Martinez EZ, Achcar JA, Jácome AA, Santos JS. Mixture and ...
  • Wienke A, Lichtenstein P, Yashin AI. A bivariate frailty model ...
  • Lambert PC, Thompson JR, Weston CL, Dickman PW. Estimating and ...
  • Kim S, Chen MH, Dey DK, Gamerman D. Bayesian dynamic ...
  • Othus M, Barlogie B, LeBlanc ML, Crowley JJ. Cure models ...
  • Chen M, Ibrahim JG. Bayesian inference for multivariate survival data ...
  • De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia ...
  • Achcar JA, Coelho-Barros EA, Mazucheli J. Cure fraction models using ...
  • Chen MH, Ibrahim JG, Sinha D. A new Bayesian model ...
  • Nikaeen R, Khalilian A, Bahrampour A. Determining the Effective Factors ...
  • de Souza D, Cancho VG, Rodrigues J, Balakrishnan N. Bayesian ...
  • Yin G. Bayesian cure rate frailty models with application to ...
  • Ata N, Ozel G. Survival functions for the frailty models ...
  • Balakrishnan N, Peng Y. Generalized gamma frailty model. Stat Med. ...
  • Yin G. Bayesian transformation cure frailty models with multivariate failure ...
  • Seltman H, Greenhouse J, Wasserman L. Bayesian model selection: analysis ...
  • Cowles MK, Carlin BP. Markov chain monte carlo convergence diagnostics: ...
  • Cancho VG, Rodrigues J, de Castro M. A flexible model ...
  • Tsodikov AD, Ibrahim JG, Yakovlev AY. Estimating cure rates from ...
  • Ahn E, Kang H. Introduction to systematic review and meta-analysis. ...
  • Barza M, Trikalinos TA, Lau J. Statistical considerations in meta-analysis. ...
  • Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, ...
  • Lam KF, Wong KY, Zhou F. A semiparametric cure model ...
  • Rodrigues J, Cancho VG, de Castro M, Balakrishnan N. A ...
  • Crumer AM. Comparison between weibull and cox proportional hazards models. ...
  • Riker AI, Zea N, Trinh T. The epidemiology, prevention, and ...
  • Saez-Castillo AJ, Conde-Sanchez A. A hyper-Poisson regression model for overdispersed ...
  • Rahimzadeha M, Hajizadeha E, Eskandarib F. Non-mixture cure correlated frailty ...
  • DeVita VT Jr, Chu E. A history of cancer chemotherapy. ...
  • Sastre J, Garcia-Saenz JA, Diaz-Rubio E. Chemotherapy for gastric cancer. ...
  • Khorfan R, Schlick CJR, Yang AD, Odell DD, Bentrem DJ, ...
  • Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, ...
  • نمایش کامل مراجع