The Generalized New Two-Type ParameterEstimator in Linear Regression Model
محل انتشار: اولین کنفرانس ملی محاسبات نرم و علوم شناختی
سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 188
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SCCS01_003
تاریخ نمایه سازی: 11 دی 1401
چکیده مقاله:
In this paper, a new two-type parameter estimator is proposed. This estimator is ageneralization of the new two parameter (NTP) estimator introduced by Yang and Chang[۸], which includes the ordinary least squares (OLS), the generalized ridge (GR) andgeneralized Liu (GL) estimators, as special cases. Here, the performance of this newestimator is, theoretically, investigated over the OLS, the GR, the GL and the NTPestimators in terms of mean squared error matrix (MSEM) criterion. Furthermore, theestimation of the biasing parameters is obtained to minimize the scalar mean squared error(MSE). In addition, a complementary algorithm is proposed for the estimator presented byYang and Chang [۸]. As well, a numerical example is given and a simulation study is done
کلیدواژه ها:
نویسندگان
Amir Zeinal
Department of statistics, Faculty of Mathematical sciences, University of Guilan, Rasht, Iran.
Mohamad reza Azmoun Zavie Kivi
Department of statistics, Faculty of Mathematical sciences, University of Guilan, Rasht, Iran.