The Generalized New Two-Type ParameterEstimator in Linear Regression Model

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 188

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SCCS01_003

تاریخ نمایه سازی: 11 دی 1401

چکیده مقاله:

In this paper, a new two-type parameter estimator is proposed. This estimator is ageneralization of the new two parameter (NTP) estimator introduced by Yang and Chang[۸], which includes the ordinary least squares (OLS), the generalized ridge (GR) andgeneralized Liu (GL) estimators, as special cases. Here, the performance of this newestimator is, theoretically, investigated over the OLS, the GR, the GL and the NTPestimators in terms of mean squared error matrix (MSEM) criterion. Furthermore, theestimation of the biasing parameters is obtained to minimize the scalar mean squared error(MSE). In addition, a complementary algorithm is proposed for the estimator presented byYang and Chang [۸]. As well, a numerical example is given and a simulation study is done

نویسندگان

Amir Zeinal

Department of statistics, Faculty of Mathematical sciences, University of Guilan, Rasht, Iran.

Mohamad reza Azmoun Zavie Kivi

Department of statistics, Faculty of Mathematical sciences, University of Guilan, Rasht, Iran.