Cost-Aware and Energy-Efficient Task Scheduling Based on Grey Wolf Optimizer

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 266

فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_KJMMRC-12-1_016

تاریخ نمایه سازی: 11 دی 1401

چکیده مقاله:

One of the principal challenges in the cloud is the task scheduling problem. Appropriate task scheduling algorithms are needed to achieve goals such as load balancing, minimum cost, minimum energy consumption, etc. Using meta-heuristic algorithms is a good way to solve scheduling problems in the cloud because scheduling is an NP-hard problem. In recent years, various meta-heuristic algorithms have been introduced, one of the most popular meta-heuristic algorithms to deal with optimization problems is the Grey Wolf Optimizer (GWO) algorithm. This paper introduces a novel GWO-based task scheduling (GWOTS) algorithm to map tasks over the available resources. The principal goal of this paper is to decrease execution cost, energy consumption, and makespan. The efficiency of the GWOTS algorithm is compared with the well-known meta-heuristic algorithms, namely Genetic Algorithm (GA), Dragonfly Algorithm (DA), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Ant Colony Optimization (ACO), Gravitational Search Algorithm (GSA), Sooty Tern Optimization Algorithm (STOA), Artificial Hummingbird Algorithm (AHA), Multi-Verse Optimizer (MVO), and Sine Cosine Algorithm (SCA). In addition, the performance of GWOTS is compared with three recently scheduling algorithms, namely SOATS, IWC, and CETSA. Experimental results show that the GWOTS algorithm improves performance in terms of makespan, cost, energy consumption, total execution time, resource utilization, throughput, and degree of resource load balance compared to other algorithms.

نویسندگان

Reyhane Ghafari

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Najme Mansouri

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B.H. Abed-Alguni, N.A. Alawad, Distributed Grey Wolf Optimizer for scheduling ...
  • M.S. Ajmal, Z. Iqbal, F.Z. Khan, M. Ahmad, I. Ahmad, ...
  • D. Alboaneen, H. Tianfield, Y. Zhang, B. Pranggono, A metaheuristic ...
  • K. Alzhrani, F. Alotaibi,Ensuring Security and Privacy for Cloud-based E-Services, ...
  • S.A. Alsaidy, A.D. Abbood, M.A. Sahib, Heuristic initialization of PSO ...
  • N. Arora, R.K. Banyal, A Particle Grey Wolf Hybrid Algorithm ...
  • S.A. Bello, L.O. Oyedele, O.O. Akinade, M. Bilal, J.M. Davila ...
  • X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, ...
  • G. Dhiman, A. Kaur, STOA: a bio-inspired based optimization algorithm ...
  • T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, A. Cosar, A survey ...
  • M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by ...
  • K. Dubey, S.C. Sharma, A novel multi-objective CR-PSO task scheduling ...
  • H. Emami, Cloud task scheduling using enhanced sunflower optimization algorithm, ...
  • M.A. Elaziz, S. Xiong, K.P.N. Jayasena, L. Li, Task scheduling ...
  • H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili, Grey wolf ...
  • X. Fu, Y. Sun, H. Wang, H. Li, Task scheduling ...
  • R. Ghafari, N. Mansouri, An Efficient Task Scheduling Based on ...
  • R. Ghafari, F.H. Kabutarkhani, N. Mansouri, Task scheduling algorithms for ...
  • X. Guo, Multi-objective task scheduling optimization in cloud computing based ...
  • J.H. Holland, Adaptation in natural and artificial systems: an introductory ...
  • E.H. Houssein, A.G. Gad, Y.M. Wazery, P.N. Suganthan, Task Scheduling ...
  • L. Imene, S. Sihem, K. Okba, B. Mohamed, A third ...
  • J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ...
  • J.K. Konjaang, L. Xu, Meta-heuristic Approaches for Effective Scheduling in ...
  • N. Manikandan, N. Gobalakrishnan, K. Pradeep, Bee optimization based random ...
  • N. Mansouri, B.M.H. Zade, M.M. Javidi, Hybrid task scheduling strategy ...
  • N. Mansouri, R. Ghafari, B.M.H. Zade, Cloud computing simulators: A ...
  • N. Mansouri, R. Ghafari, Cost-efficient task scheduling algorithm to reduce ...
  • Y. Meraihi, A.B. Gabis, A. Ramdane-Cherif, D. Acheli, A comprehensive ...
  • S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Advances ...
  • S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in ...
  • S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for ...
  • S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired ...
  • S. Mirjalili, SCA: a sine cosine algorithm for solving optimization ...
  • K. Mishra, J. Pati, S.K. Majhi, A dynamic load scheduling ...
  • S.K. Mishra, B. Sahoo, P.P. Parida, Load balancing in cloud ...
  • B. Mohammad Hasani Zade, N. Mansouri, M.M. Javidi, SAEA: A ...
  • A. Mohammadzadeh, M. Masdari, F.S. Gharehchopogh, A. Jafarian, Improved chaotic ...
  • R. NoorianTalouki, M. Hosseini Shirvani, H. Motameni, A heuristic-based task ...
  • S.K. Panda, P.K. Jana, An energy-efficient task scheduling algorithm for ...
  • A. Pradhan, S.K. Bisoy, A. Das, A survey on PSO ...
  • T. Prem Jacob, K. Pradeep, A Multi-objective Optimal Task Scheduling ...
  • E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search ...
  • A.M. Senthil Kumar, M. Venkatesan, Task scheduling in a cloud ...
  • H. Singh, S. Tyagi, P. Kumar, S.S. Gill, R. Buyya, ...
  • S. Velliangiri, P. Karthikeyan, V.M. Arul Xavier, D. Baswaraj, Hybrid ...
  • T. Wang, P. Zhang, J. Liu, M. Zhang, Many-objective cloud ...
  • W. Zhao, L. Wang, S. Mirjalili, Artificial hummingbird algorithm: A ...
  • نمایش کامل مراجع