Cost-Aware and Energy-Efficient Task Scheduling Based on Grey Wolf Optimizer
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 266
فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-12-1_016
تاریخ نمایه سازی: 11 دی 1401
چکیده مقاله:
One of the principal challenges in the cloud is the task scheduling problem. Appropriate task scheduling algorithms are needed to achieve goals such as load balancing, minimum cost, minimum energy consumption, etc. Using meta-heuristic algorithms is a good way to solve scheduling problems in the cloud because scheduling is an NP-hard problem. In recent years, various meta-heuristic algorithms have been introduced, one of the most popular meta-heuristic algorithms to deal with optimization problems is the Grey Wolf Optimizer (GWO) algorithm. This paper introduces a novel GWO-based task scheduling (GWOTS) algorithm to map tasks over the available resources. The principal goal of this paper is to decrease execution cost, energy consumption, and makespan. The efficiency of the GWOTS algorithm is compared with the well-known meta-heuristic algorithms, namely Genetic Algorithm (GA), Dragonfly Algorithm (DA), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Ant Colony Optimization (ACO), Gravitational Search Algorithm (GSA), Sooty Tern Optimization Algorithm (STOA), Artificial Hummingbird Algorithm (AHA), Multi-Verse Optimizer (MVO), and Sine Cosine Algorithm (SCA). In addition, the performance of GWOTS is compared with three recently scheduling algorithms, namely SOATS, IWC, and CETSA. Experimental results show that the GWOTS algorithm improves performance in terms of makespan, cost, energy consumption, total execution time, resource utilization, throughput, and degree of resource load balance compared to other algorithms.
کلیدواژه ها:
نویسندگان
Reyhane Ghafari
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
Najme Mansouri
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :