Inference in Univariate and Bivariate Autoregressive Models with Non-Normal Innovations

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 200

فایل این مقاله در 31 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_KJMMRC-12-1_005

تاریخ نمایه سازی: 11 دی 1401

چکیده مقاله:

‎In this paper we consider the estimation, ‎order and model selection of autoregressive time series model which may be driven by non-normal innovations. ‎The paper makes two contributions. ‎First, ‎we consider the method of moments for a univariate and also a bivariate time series model; the importance of using the method of moments is that it can provide us with consistent estimates easily for any model order and for any kind of distribution that we can assume for the non-normal innovations‎. ‎Second, ‎we provide methods for order and model selection, ‎i.e‎. ‎for selecting the order of the autoregression and the model for the innovation's distribution. ‎Our analysis provides analytic results on the asymptotic distribution of the method of moments estimators and also computational results via simulations‎. ‎Our results show that although the performance of modified maximum likelihood estimators is better than method of moments estimators when the sample size is small but both methods have approximately same performance as the sample size increase and in misspecification case. ‎Also It is shown that focussed information criterion is an appropriate criterion for model selection for autoregressive models with non-normal innovations based on the method of moments estimators.

نویسندگان

Sedigheh Zamani Mehreyan

Department of Statistics, Imam Khomeini International University, Qazvin, Iran

Abdolreza Sayyareh

Department of Computer Science and Statistics, Faculty of Mathematics, K.N. Toosi University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Akaike, Fitting autoregressive models for prediction, Ann. Inst. Stat. ...
  • H. Akaike, Information theory and an extension of the maximum ...
  • A.D. Akkaya, and M.L. Tiku, Estimating parameters in autoregressive models ...
  • A.D. Akkaya, and M.L. Tiku, Corrigendum: time series models with ...
  • A.D. Akkaya, and M.L. Tiku, Time series AR(۱) model for ...
  • N. Balakrishna, Non-Gaussian autoregressive - type time Series, Springer Nature ...
  • O.T. Bayrak, and A.D. Akkaya, Estimating parameters of a multiple ...
  • P. Bondon, Estimation of autoregressive models with epsilon-skew-normal innovations, Journal ...
  • G. E. P. Box and G. M. Jenkins, Time series ...
  • G. Claeskens, and N. L. Hjort, The focused information criterion ...
  • G. Claeskens, C. Croux, and J. Van Kerckhoven, "Prediction focussed ...
  • M. Freimer, G.S. Mudholkar, G. Kollia, and C.T. Lin, A ...
  • D. P. Gaver and P. A. Lewis, First order autoregressive ...
  • C. Gourieroux, and J. Jasiak, Autoregressive gamma processes, Journal of ...
  • S. Kullback and R. A. Leibler, Information and suciency modelling, ...
  • R. Shibata, Approximate eciency of a selection procedure for the ...
  • A. G. W. Steyn, Estimating parameters in an autoregressive process ...
  • M. L. Tiku, Estimating the mean and standard deviation from ...
  • G. Walker, On periodicity in series of related terms, Proceedings ...
  • G. Yule, On a method of investigating periodicities in disturbed ...
  • نمایش کامل مراجع