A bilingual text detection in natural images using heuristic and unsupervised learning

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 196

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-10-4_001

تاریخ نمایه سازی: 28 آذر 1401

چکیده مقاله:

Digital images are being produced in a massive number every day. Acomponent that may exist in digital images is text. Textual information can beextracted and used in a variety of fields. Noise, blur, distortions, occlusion, fontvariation, alignments, and orientation, are among the main challenges for textdetection in natural images. Despite many advances in text detection algorithms,there is not yet a single algorithm that addresses all of the above problemssuccessfully. Furthermore, most of the proposed algorithms can only detecthorizontal texts and a very small fraction of them consider Farsi language. Inthis paper, a method is proposed for detecting multi-orientated texts in both Farsiand English languages. We have defined seven geometric features to distinguishtext components from the background and proposed a new contrast enhancementmethod for text detection algorithms. Our experimental results indicate that theproposed method achieves a high performance in text detection on natural images.

نویسندگان

S. Bayatpour

Faculty of Engineering and Technology, Alzahra University, Tehran, Iran.

M. Sharghi

Faculty of Engineering and Technology, Alzahra University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Chen, S.S. Tsai, G. Schroth, D.M. Chen, R. Grzeszczuk, ...
  • Q. Ye and D. Doermann, “Scene Text Detection via Integrated ...
  • S. Liu, Y. Xian, H. Li, and Z. Yu, “Text ...
  • S. Lee, M.S. Cho, K. Jungz, and J.H. Kim, “Scene ...
  • L. Neumann, and J. Matas, “Real-time Lexicon-free Scene Text Localization ...
  • J.L. Field and E.G. Learned-Miller, “Improving Open-Vocabulary Scene Text Recognition,” ...
  • H. Zhang, K. Zhao, Y. ZheSong, and J. Guo, “Text ...
  • X. Chen, J. Yang, J. Zhang, and A. Waibel, “Automatic ...
  • N. Nikolaou, and N. Papamarkos, “Color Reduction for Complex Document ...
  • V. Wu, R. Manmatha, and E.M. Riseman, “Text Finder: An ...
  • X. Liu, and J. Samarabandu, “Mult-scale Edge-based Text Extraction from ...
  • W. Ou, J. Zhu, and C. Liu, “Text Location in ...
  • S. Yousfi, A. Berrani, and C. Garcia, “Boosting-based Approaches for ...
  • V.N.M. Aradhya, and M.S. Pavithra, “A Comprehensive of Transforms, Gabor ...
  • H. Goto, and M. Tanaka, “Text-Tracking Wearable Camera System for ...
  • K.I. Kim, K. Jung, and H. Kim, “Texture-based Approach for ...
  • Y.F. Pan, C.L. Liu, and X.Hou, “Fast Scene Text Localization ...
  • S. Lucas, “ICDAR ۲۰۰۵ Text Locating Competition Results,” in Eight ...
  • K. Wang, and J.A. Kangas, “Character Location in Scene Images ...
  • M. Zhao, S. Li, and J. Kwok, “Text Detection in ...
  • X. Zhao, K.H. Lin, Y. Fu, Y. Hu, Y. Liu, ...
  • P. Shivakumara, T.Q. Phan, and C.L. Tan, “A Laplacian Approach ...
  • K.L. Bouman, G. Abdollahian, M. Boutin, and E.J. Delp, “A ...
  • M. Moradi, S. Mozaffari, and A. Oruji, “Farsi/Arabic Text Extraction ...
  • X.C. Yin, W.Y. Pei, J. Zhang, and H.W. Hao, “Multi-orientation ...
  • L. Kang, Y. Li, and D. Doermann, “Orientation Robust Text ...
  • A. Mosleh, N. Bouguila, and A. Ben Hamza, “Image Text ...
  • C. Yao, X. Bai, and W. Liu, “A Unified Framework ...
  • W. Huang, Z. Lin, J.C. Yang, and J. Wang, “Text ...
  • L. Neumann, and J. Matas, “Scene Text Localization and Recognition ...
  • S. Mansouri, M. Charhad, and M. Zrigui, “A Heuristic Approach ...
  • M. Darab, and M. Rahmati, “A Hybrid Approach to Localize ...
  • X.C. Yin, X. Yin, K. Huang, and H. Hao, “Robust ...
  • H.P. Le, N.D. Toan, S.C. Park, and G. Lee, “Text ...
  • Y. Wang, H. Xie, Z. Fu, and Y. Zhang, “DRSN: ...
  • C. Yi, and Y.L. Tian, “Text String Detection from Natural ...
  • S.B. Ahmed, S. Naz, M.I. Razzak, and R. Yousaf, “Deep ...
  • L. Li, S. Yu, L. Zhong, and X. Li, “Multilingual ...
  • Y. Liu and L. Jin, “Deep Matching Prior Network: Toward ...
  • Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, ...
  • Li, Yao, and Lu, “Scene Text Detection via Stroke Width,” ...
  • C. Wolf, and J.M. Jolion, “Object count/area Graphs for the ...
  • C. Yao, X. Bai, W. Liu, Y. Ma, and Y. ...
  • B. Shi, X. Bai, and S. Belongie, “Detecting oriented text ...
  • H. Xie, S. Fang, Z.J. Zha, Y. Yang, Y Li, ...
  • C. K. Chng, and C. S. Chan, “Total-Text: A Comprehensive ...
  • M. Liao, B. Shi, X. Bai, X. Wang, and W. ...
  • H. Noh, S. Hong, and B. Han, “Learning deconvolution network ...
  • S. Chan, “Total-Text” Dataset [online]. Available: https://github.com/cs-chan/Total-Text-Dataset[۵۶] S. Bayatpour “DNIFT: Dataset ...
  • نمایش کامل مراجع