A bilingual text detection in natural images using heuristic and unsupervised learning
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 10، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 184
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-10-4_001
تاریخ نمایه سازی: 28 آذر 1401
چکیده مقاله:
Digital images are being produced in a massive number every day. Acomponent that may exist in digital images is text. Textual information can beextracted and used in a variety of fields. Noise, blur, distortions, occlusion, fontvariation, alignments, and orientation, are among the main challenges for textdetection in natural images. Despite many advances in text detection algorithms,there is not yet a single algorithm that addresses all of the above problemssuccessfully. Furthermore, most of the proposed algorithms can only detecthorizontal texts and a very small fraction of them consider Farsi language. Inthis paper, a method is proposed for detecting multi-orientated texts in both Farsiand English languages. We have defined seven geometric features to distinguishtext components from the background and proposed a new contrast enhancementmethod for text detection algorithms. Our experimental results indicate that theproposed method achieves a high performance in text detection on natural images.
کلیدواژه ها:
نویسندگان
S. Bayatpour
Faculty of Engineering and Technology, Alzahra University, Tehran, Iran.
M. Sharghi
Faculty of Engineering and Technology, Alzahra University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :