VANET Vulnerabilities Classification and Countermeasures: A Review

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 260

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-16-3_009

تاریخ نمایه سازی: 2 آذر 1401

چکیده مقاله:

Information is the driving force in vehicular ad hoc networks (VANET) since vehicles share information (emergency, general, and multimedia). VANET communicates between vehicles using a unique routing protocol, unlike other wireless routing technologies. Many protocols, techniques, and approaches have been developed to secure and protect data. To enhance current security and privacy measures and develop and model new ones, the ideas of machine learning (ML), deep learning (DL), and artificial intelligence are being applied. In this paper, we provide information on the various types of attacks that target VANET communication, VANET layers, the security goals that are affected, and real-time attacks that occur on manufacturing hubs. We compared various VANET attack prevention, detection, and AI techniques proposed, as well as future research work in the field of VANET, for improving accuracy, security, and privacy.

کلیدواژه ها:

نویسندگان

Vamshi Krishna K

VIT-AP University , Amaravati, AP, India

Ganesh Reddy K

VIT- AP University, Amaravati, AP, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bako B & Weber M.: Efficient information dissemination in VANETs. ...
  • Ranjan P & Ahirwar K.K.: Comparative study of vanet and ...
  • Kumar R & Dave M.: A review of various vanet ...
  • Hartenstein H & Laberteaux K.P.: A tutorial survey on vehicular ...
  • Zeadally S., Hunt R., Chen Y.S., Irwin A and Hassan ...
  • Manvi S.S and Tangade S.: A survey on authentication schemes ...
  • Mishra R., Singh A and Kumar R.: VANET security: Issues, ...
  • Cui J., Wei L., Zhang J., Xu Y and Zhong ...
  • Al-Shareeda M.A., Anbar M., Hasbullah I.H and Manickam S.: Survey ...
  • Xie L., Ding Y., Yang H and Wang X.: Block ...
  • Kumar G., Saha R., Rai M.K and Kim T.H.: Multidimensional ...
  • Kumar N and Chilamkurti N.: Collaborative trust aware intelligent intrusion ...
  • Maier, M.W., Emery, D & Hilliard, R.: Software architecture: introducing ...
  • Tomar R., Prateek M & Sastry G. H.: Vehicular Adhoc ...
  • Azam F., Yadav S.K., Priyadarshi N., Padmanaban, S & Bansal ...
  • Cheng H & Liu Y.: An improved RSU-based authentication scheme ...
  • Maria A., Pandi V., Lazarus J.D., Karuppiah M & Christo ...
  • Yang M., Chen J., Chen Y., Ma R & Kumar ...
  • Khalid H., Hashim S.J., Ahmad S. M. S., Hashim F ...
  • Jiang H., Hua L & Wahab L.: SAES: a self-checking ...
  • Moni S.S & Manivannan D.: A lightweight Privacy-Preserving V۲I Mutual ...
  • Wang Y., Zhang W., Wang X., Khan M.K & Fan, ...
  • Cheng Y., Xu S., Zang M., Jiang S & Zhang, ...
  • Al-Shareeda M.A., Anbar M., Manickam S & Hasbullah I.H.: Towards ...
  • Ercan S., Ayaida M & Messai N.: Misbehavior Detection for ...
  • Al-Mehdhara M & Ruan N.: MSOM: Efficient Mechanism for Defense ...
  • Alharthi A., Ni Q & Jiang R.: A privacy-preservation framework ...
  • Polat O.N.U.R., Koçak C.E.M.A.L & Polat H.Ü.S.E.Y.İ.N.: Recognition of DDoS ...
  • Parfenov, D., Bolodurina I., Grishina L and Zhigalov A.: Investigation ...
  • Maleknasab Ardakani M., Tabarzad M.A & Shayegan M.A.: Detecting Sybil ...
  • Pattanayak B.K., Pattnaik O & Pani S.: Dealing with Sybil ...
  • Alladi T., Gera B., Agrawal A., Chamola V & Yu ...
  • Sabbagh A.A & Shcherbakov M.V.: A Secure and Stable Routing ...
  • Bangui H., Ge M & Buhnova B.: A Hybrid Data-driven ...
  • Kolandaisamy R., Noor R.M., Kolandaisamy I., Ahmedy I., Kiah M.L.M., ...
  • Alhaidari, Fahd A and Alia Mohammed Alrehan. A simulation work ...
  • Thilak, K., Deepa, A., Amuthan and Rajkamal S.: Mitigating DDoS ...
  • Gaurav A., Gupta B.B., Peñalvo F.J.G., Nedjah N & Psannis ...
  • Bensalah F., Elkamoun N & Baddi Y.: SDNStat-Sec: a statistical ...
  • Xie Y., Guo Y., Yang S., Zhou J & Chen ...
  • Alassery, F.: Predictive maintenance for cyber-physical systems using neural network ...
  • Huong T.T., Bac T.P., Long D.M., Luong T.D., Dan N.M., ...
  • Sharmila V.C., Aslam H.M & Riswan M.M.: Analysing and Identifying ...
  • Mchergui A., Moulahi T & Zeadally S.: Survey on Artificial ...
  • Bangui H., Ge M & Buhnova B.: A hybrid machine ...
  • Bakkoury, S., Ouahou S., Bah Z.: New machine learning solution ...
  • Zang M & Yan Y.: Machine learning-based intrusion detection system ...
  • Phull N., Singh P., Shabaz M & Sammy F.: Enhancing ...
  • Saleem M.A., Shijie Z., Sarwar M.U., Ahmad T., Maqbool A., ...
  • Bibi R., Saeed Y., Zeb A., Ghazal T.M., Rahman T., ...
  • Sepasgozar S.S & Pierre S.: An Intelligent Network Traffic Prediction ...
  • Goyal A.K., Kumar Tripathi A and Agarwal G.: Security Attacks, ...
  • Verma A., Saha R., Kumar G & Kim T.H.: The ...
  • Cellular-Vehicle-to-Everything-C-V۲X. Available online: https://internetofthingsagenda.techtarget.com/definition/Cellular-Vehicle-to-Everything-C-V۲X[۵۹] Hamdi M.M., Audah L., Abood M.S., ...
  • Al-Shareeda M.A., Anbar M., Hasbullah I.H and Manickam S., Survey ...
  • Liang, J., Ma, M and Tan, X.: GaDQN-IDS: A Novel ...
  • Bangui, H., Ge, M & Buhnova, B.: A hybrid machine ...
  • Aboelfottoh A.A and Azer M.A.: Intrusion Detection in VANETs and ...
  • Mahmood J., Duan Z., Yang Y., Wang Q., Nebhen J ...
  • نمایش کامل مراجع