On Characterizing Solutions of Optimization Problems with Roughness in the Objective Functions
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 276
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_FOMJ-3-3_004
تاریخ نمایه سازی: 11 آبان 1401
چکیده مقاله:
Rough set theory expresses vagueness, not by means of membership, but employing a boundary region of a set. If the boundary region of a set is empty, it means that the set is crisp. Otherwise, the set is rough. Nonempty boundary region of a set means that our knowledge about the set is not sufficient to define the set precisely. In this paper, a rough programming (RP) problem is introduced where a rough function concept and its convexity and differentiability depending on the boundary region is studied. The RP problem is converted into two subproblems namely, lower and upper approximation problem. The Kuhn-Tucker. Saddle point of rough programming problem (RPP) is discussed. In addition, in the case of differentiability assumption the solution of the RP problem is investigated A numerical example is given to illustrate the methodology.
کلیدواژه ها:
Convex function ، Convex rough function ، Differentiable rough function ، Nonlinear programming problem ، Kuhn- Tucker's Optimal Saddle Point
نویسندگان
S. A. Edalatpanah
Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.
Hamiden Abd El- Wahed Khalifa
Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt,
Hashem Saberi Najafi
Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.