A study and analysis on the energy management system in a microgrid with the presence of renewable units

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 246

فایل این مقاله در 19 صفحه با فرمت PDF و WORD قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

RSETCONF10_081

تاریخ نمایه سازی: 28 شهریور 1401

چکیده مقاله:

A microgrid connects to the grid at a point of common coupling that maintains voltage at the same level as the main grid unless there is some sort of problem on the grid or other reason to disconnect. A switch can separate the microgrid from the main grid automatically or manually, and it then functions as an island. In recent years, the power system has been evolved into microgrids, which are little pockets of self-contained entities. Different distributed, interconnected generation units, loads, and energy storage units make up a typical microgrid system. The increased energy efficiency of these units on microgrids is gaining popularity day by day. Because of their stochastic behavior, renewable generation causes an imbalance in the power system, which needs microgrid energy management. Renewable energy sources have emerged as an alternative to meet the growing demand for energy, mitigate climate change, and contribute to sustainable development. The integration of these systems is carried out in a distributed manner via microgrid systems; this provides a set of technological solutions that allows information exchange between the consumers and the distributed generation centers, which implies that they need to be managed optimally. Energy management in microgrids is defined as an information and control system that provides the necessary functionality, which ensures that both the generation and distribution systems supply energy at minimal operational costs. This paper presents a literature review of energy management in microgrid systems using renewable energies, along with a comparative analysis of the diferent optimization objectives, constraints, solution approaches, and simulation tools applied to both the interconnected and isolated microgrids. To manage the intermittent nature of renewable energy, energy storage technology is considered to be an attractive option due to increased technological maturity, energy density, and capability of providing grid services such as frequency response. Finally, future directions on predictive modeling mainly for energy storage systems are also proposed.

نویسندگان

Hoshmand Saifpanahi

Bachelor of Electrical Engineering, Control major, Faculty of Engineering, University of Kurdistan, Kurdistan, Iran