Bearing Fault Detection Based on Coherence Analysis Using Optimized Windowing and Levenberg-Marquardt via the Bees Algorithm
محل انتشار: بیستمین کنفرانس سالانه مهندسی مکانیک
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,759
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISME20_555
تاریخ نمایه سازی: 18 تیر 1391
چکیده مقاله:
Rolling element bearings are very important mechanical components in rotating machineries. Fault detection and diagnosis in the early stages of damage is necessary to prevent their malfunctioning and failure during operation. Vibration monitoring is the most widely used and cost-effective monitoring technique to detect, locate and distinguish faults in rolling element bearings. This paper presents an algorithm using coherence analysis and optimized windowing function and feed-forward network trained with optimized Levenberg-Marquardt by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. Magnitude squared coherences of periodogram are used as input features for the neural network. Trained neural networks are able to classify different states of the bearing with 100% accuracy. The proposed procedure requires only a few input features, resulting in simple preprocessing and faster training. Effectiveness of the proposed method is illustrated using the experimentally obtained bearing vibration data.
کلیدواژه ها:
نویسندگان
Behrooz Attaran
Graduate Student, Mechanical Engineering Department, University of Shahid Chamran
Afshin Ghanbarzadeh
Assistant Professor, Mechanical Engineering Department, University of Shahid Chamran
Karim Ansari-Asl
Assistant Professor, Electrical Engineering Department, University of Shahid Chamran
Reza Zaeri
Graduate Student, Mechanical Engineering Department, University of Shahid Chamran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :