A New Mathematical Model in Cell Formation Problem with Consideration of Inventory and Backorder: Genetic and Particle Swarm Optimization Algorithms
محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 10، شماره: 4
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 213
فایل این مقاله در 33 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-10-4_003
تاریخ نمایه سازی: 23 شهریور 1401
چکیده مقاله:
Cell Formation (CF) is the initial step in the configuration of cell assembling frameworks. This paper proposes a new mathematical model for the CF problem considering aspects of production planning, namely inventory, backorder, and subcontracting. In this paper, for the first time, backorder is considered in cell formation problem. The main objective is to minimize the total fixed and variable costs, including the machine related costs, intercellular movements, deviation between the levels of cell utilizations, inventory, backorder, and sub-contracting costs. The presented mathematical model is validated using GAMS software, and various test problems are solved by Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) algorithm. The performance of the algorithms is compared with the results obtained by the GAMS. The results demonstrate, there is no significant difference between the results of algorithms. Finally, some sensitive analyses are carried out to analyze the effects of backorder and inventory holding costs.
کلیدواژه ها:
نویسندگان
مسعود ربانی
Faculty of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
مهیار طاهری باویل علیائی
Faculty of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
حامد فرخی اصل
Faculty of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran
مهدی مبینی
Faculty of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :