Bank Efficiency Forecasting Model Based on the Modern Banking Indicators Using a Hybrid Approach of Dynamic Stochastic DEA and Meta-Heuristic Algorithms
محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 15، شماره: 1
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 251
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-15-1_008
تاریخ نمایه سازی: 23 شهریور 1401
چکیده مقاله:
Evaluating the efficiency of banks is crucial to orient their future decisions. In this regard, this paper proposes a new model based on dynamic stochastic data envelopment analysis in a fuzzy environment by considering the modern banking indicators to predict the efficiency of banks, which belongs to the category of NP-hard problems. To deal with the uncertainty in efficiency forecasting, the mean chance theory was used to express the constraints of the model and the expected value in its objective function to forecast the expected efficiency of banks. To solve the proposed model, two hybrid algorithms were designed by combining Monte Carlo (MC) simulation technique with Genetic Algorithm (GA) and Imperialist Competitive Algorithm (ICA). In order to improve the performances of MC-GA and MC-ICA parameters, the Response Surface Methodology (RSM) was applied to set their proper values. In addition, a case study in the modern banking industry was presented to evaluate the performance of the proposed model and the effectiveness of the hybrid algorithms. The results showed that the proposed model had high accuracy in predicting efficiency. Finally, to validate the designed hybrid algorithms, their results were compared with each other in terms of accuracy and convergence speed to the solution.
کلیدواژه ها:
Dynamic Stochastic Data Envelopment Analysis ، Fuzzy programming ، Hybrid Meta-heuristic Algorithm ، Modern Banking ، Monte Carlo simulation
نویسندگان
علی یعقوبی
Postdoctoral Research Student, Department of Industrial Management, Faculty of Social Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
صفر فضلی
Associate Professor, Department of Industrial Management, Faculty of Social Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :