Reinforced Teacher Corrective Feedback and Learners’ Use of Subordination Clauses
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 231
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AREUIT-11-3_005
تاریخ نمایه سازی: 21 مرداد 1401
چکیده مقاله:
With numerous variables mediating the way learners interact with teacher corrective feedback (TCF), one may not comment on its efficacy before such intervening variables are adequately addressed and learners’ attendance to TCF is ensured. Among those variables, motivation is one of the most prominent ones largely affecting the degree to which students benefit from TCF. Draft-Specific Scoring (DSS), a scoring system giving learners’ a reason to notice TCF by rewarding them for the revisions they make through a flexible system of scoring, was implemented to investigate if TCF could help learners improve their use of subordinate clauses. To do so, two groups of students studying English Language Literature at the University of Tehran, consisting of ۵۵ participants who were randomly assigned as treatment and control groups, were studied. The results of the gain analysis indicated an improvement for both groups over time in the total number and accuracy of the subordination clauses used; however, the treatment group significantly outperformed the control group. While the two groups did not differ in their use of noun clauses, the DSS group was found to outperform the non-DSS group regarding the adverb and adjective clauses. This indicates that motivation to attend to teacher feedback is of great importance if TCF is to be effective.
کلیدواژه ها:
نویسندگان
Masoud Azizi
Assistant Professor, Department of Foreign Languages, Amirkabir University of Technology, Tehran, Iran
Majid Nemati
Associate Professor, Department of English, Faculty of Foreign Languages and Literatures, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :