Ensemble of Log-Euclidean Kernel SVM based on Covariance Descriptors of Multiscale Gabor Features for Face Recognition

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 229

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-35-11_002

تاریخ نمایه سازی: 9 مرداد 1401

چکیده مقاله:

Face recognition (FR) is a challenging computer vision task due to various adverse conditions. Local features play an important role in increasing the recognition rate of an FR method. In this direction, the covariance descriptors of Gabor wavelet features have been one of the most prominent methods for accurate FR. Most existing methods rely on covariance descriptors of Gabor magnitude features extracted from single-scale face images. This study proposes a new method named multiscale Gabor covariance-based ensemble Log-euclidean SVM (MGcov-ELSVM) for FR that uses the covariance descriptors of Gabor magnitude and phase features derived from multiscale face representations. MGcov-ELSVM begins by producing multiscale face representations. Gabor magnitude and phase features are derived from the multiscale face images in the second stage. After that, the Gabor magnitude and phase features are used to generate covariance descriptors. Finally, Covariance descriptors are classified via a log-Euclidean SVM classifier, and a majority voting technique determines the final recognition results. The experimental results from two face databases, ORL and Yale, indicate that the MGcov-ELSVM outperforms some recent FR methods.

نویسندگان

Behnam Asghari Beirami

Department of photogrammetry and remote sensing, Faculty of geodesy and geomatics, K. N. Toosi University of Technology, Tehran, Iran

Mehdi Mokhtarzade

Department of photogrammetry and remote sensing, Faculty of geodesy and geomatics, K. N. Toosi University of Technology, Tehran, Iran