Steganalysis Based on Fast Sparse RepresentationClassification on Least Significant Bit Steganography

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 179

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ISCEL02_007

تاریخ نمایه سازی: 1 مرداد 1401

چکیده مقاله:

Detection of hidden message existence in low-rate steganography is still a challenging problem in manysteganalysis systems. The recently proposed steganalysis scheme based on sparse representationclassification has shown relatively remarkable detection capability in low embedding rate. In this paper,we propose a new steganalysis system using a fast sparse representation classifier. We compare ourproposed method with other steganalysis systems which uses different classifiers, including nearestneighbor, support vector machine, ensemble support vector machine, and conventional sparserepresentation based classifier on LSB steganography method. In all of our experiments, input features tothe classifier are kept intact to examine the ability of classifier to discriminate between innocent and stegoimages.

نویسندگان

Arash Jalali

Khorasan Regional Electric Company