Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 158
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CHAL-4-1_001
تاریخ نمایه سازی: 1 مرداد 1401
چکیده مقاله:
In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimensional differential equations by taking suitable similarity variables and solved numerically using differential quadrature method (DQM). The interfacial (solid-liquid) temperature distribution and the variations of velocity and temperature within boundary layer for different values of governing parameter in presence of uniform magnetic field have been presented and discussed. Our results demonstrate that heat transfer rate can enhance using nanofluid as well as porous medium, while magnetic field has no remarkable effect on the parameter. The computed results were also compared with those available in the existing literature and a good agreement was observed.
کلیدواژه ها:
Conjugate heat transfer ، differential quadrature method (DQM) ، Magneto hydrodynamic (MHD) ، MHD-mixed convection ، Nanofluid
نویسندگان
B. Jafarian
Department of Chemical Engineering, Persian Gulf University, ۷۵۱۶۸, Boushehr, I. R.Iran
M. Hajipour
Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, I. R. Iran
R. Khademi
Department of Chemical Engineering, University of Sistan and Baluchestan, ۹۸۱۶۴-۱۶۱, Zahedan, I. R.Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :