Introducing a New Hybrid Adaptive Local Optimal Low Rank Approximation Method for Denoising Images

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 216

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IECO-3-2_007

تاریخ نمایه سازی: 20 تیر 1401

چکیده مقاله:

This paper aimed to formulate image noise reduction as an optimization problem and denoise the target image using matrix low rank approximation. Considering the fact that the smaller pieces of an image are more similar (more dependent) in natural images; therefore, it is more logical to use low rank approximation on smaller pieces of the image. In the proposed method, the image corrupted with AWGN (Additive White Gaussian Noise) is locally denoised, and the optimization problem of low rank approximation is solved on all fixed-size patches (Windows with pixels needing to be processed). This method can be implemented in parallelly for practical purposes, because it can simultaneously handle different image patches. This is one of the advantages of this method. In all noise reduction methods, the two factors, namely the amount of the noise removed from the image and the preservation of the edges (vital details), are very important. In the proposed method, all the new ideas including the use of TI image (Training Image) and SVD adaptive basis, iterability of the algorithm and patch labeling have all been proved efficient in producing sharper images, good edge preservation and acceptable speed compared to the state-of-the-art denoising methods.

کلیدواژه ها:

Optimal Low Rank Approximation ، SVD ، Signal Denoising ، Image Denoising ، Signal Processing

نویسندگان

sadegh kalantari

Department of Electrical Engineering,Control Group,Tafresh University

mehdi ramezani

Department of Electrical Engineering,Control Group,Tafresh University

ali madadi

Department of Electrical Engineering,Control Group,Tafresh University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zhang, X., et al., Compression artifact reduction by overlapped-block transform ...
  • Khan, A., et al., Image de-noising using noise ratio estimation, ...
  • Takeda, H., S. Farsiu, and P. Milanfar, Kernel regression for ...
  • Fan, L., et al., Nonlocal image denoising using edge-based similarity ...
  • Shanthi, S.A., C.H. Sulochana, and T. Latha, Image denoising in ...
  • Chen, M., et al. An OCT image denoising method based ...
  • Reconfigurable CT QDSM with mismatch shaping dedicated to multi-mode low-IF receivers [مقاله ژورنالی]
  • Smirnov, M.W. and D.A. Silverstein, Noise reduction using sequential use ...
  • Huang, Z., et al., Progressive dual-domain filter for enhancing and ...
  • Gavaskar, R.G. and K.N. Chaudhury, Fast adaptive bilateral filtering. IEEE ...
  • Guo, Q., et al., An efficient SVD-based method for image ...
  • Aharon, M., M. Elad, and A. Bruckstein, K-SVD: An algorithm ...
  • Elad, M. and M. Aharon, Image denoising via sparse and ...
  • Mallat, S. and G. Yu, Super-resolution with sparse mixing estimators. ...
  • Jiang, L., X. Feng, and H. Yin, Structure and texture ...
  • Kalantari, S. and M.J. Abdollahifard, Optimization-based multiple-point geostatistics: A sparse ...
  • Pizurica, A. and W. Philips, Estimating the probability of the ...
  • Zhang, J., et al., Image restoration using joint statistical modeling ...
  • Jiang, J., L. Zhang, and J. Yang, Mixed noise removal ...
  • Dabov, K., et al., Image denoising by sparse ۳-D transform-domain ...
  • Dabov, K., et al., Image denoising with shape-adaptive principal component ...
  • He, Y., et al., Adaptive denoising by singular value decomposition. ...
  • Dong, W., G. Shi, and X. Li, Nonlocal image restoration ...
  • Mallat, S., A Wavelet Tour of Signal Processing: The Sparse ...
  • Starck, J.-L., E.J. Candès, and D.L. Donoho, The curvelet transform ...
  • Mallat, S. and G. Peyré, A review of bandlet methods ...
  • Do, M.N. and M. Vetterli, The contourlet transform: an efficient ...
  • Walter, G.G. and X. Shen, Convergence and Summability of Fourier ...
  • Eckart, C. and G. Young, The approximation of one matrix ...
  • نمایش کامل مراجع