Convolutional neural networks for wind turbine gearbox health monitoring
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 220
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EES-10-1_006
تاریخ نمایه سازی: 14 تیر 1401
چکیده مقاله:
Between different sources of renewable energy, wind energy, as an economical source of electrical power, has undergone a pronounced thriving. However, wind turbines are exposed to catastrophic failures, which may bring about irrecoverable ramifications. Therefore, they necessarily need condition monitoring and fault detection systems. These systems aim to reduce the number of attempts operators are required to do through the use of smart software algorithms, which are able to understand and decide with no human involvement. The gearboxes are usually responsible for the WT breakdowns. In this paper, convolutional neural networks are employed to develop an intelligent data-based condition-monitoring algorithm to differentiate healthy and damaged conditions that are evaluated with the national renewable energy laboratory (NREL) GRC database on the WT gearbox. Since it is much easier for convolutional neural networks to extract clues from high dimensional data, time-domain signals are embodied as texture images. Results show that the proposed methodology by utilizing a ۲-D convolutional neural network for binary classification is capable of classifying the NREL GRC database with ۹۹.۷۶% accuracy.
کلیدواژه ها:
Wind Turbine ، Gearbox Condition Monitoring ، Convolutional Neural Networks (CNN) ، Imaging Time-Series
نویسندگان
Samira Zare
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Moosa Ayati
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Mohammad Reza Ha&#۰۳۹iri Yazdi
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Amin Kabir Anaraki
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :