ADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 242

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-10-2_007

تاریخ نمایه سازی: 5 تیر 1401

چکیده مقاله:

In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used for combining one-class support vector machine (OCSVM), mixture of Gaussians (MoG), and self-organizing maps (SOM) one-class classifiers and the combined model is utilized to partially detect the attacks in cluster members. The votes of cluster members are periodically transmitted to the cluster head and final decision on attack detection is carried out in the cluster head. In the proposed method, an adaptive ordered weighted averaging (OWA) operator is used for aggregating the votes of cluster members in the cluster head. Since the network topology, traffic, and environmental conditions of a MANET as well as the number of nodes in each cluster dynamically change, the mere use of a fixed quantifier-based weight generation approach for OWA operator is not efficient. We propose a condition-based weight generation method for OWA operator in which the number of cluster members that participate in decision making may be varying in time and OWA weights are calculated periodically and dynamically based on the conditions of the network. Simulation results demonstrate the effectiveness of the proposed method in detecting  rushing, RouteError fabrication, and wormhole attacks.

کلیدواژه ها:

Ordered weighted averaging weight generation ، Mobile ad hoc network ، Anomaly detection

نویسندگان

Mohammad Rahmanimanesh

Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran

Saeed Jalili

Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. S. Ahn, Preference relation approach for obtaining OWA operators ...
  • B. S. Ahn, Parameterized OWA operator weights: an extreme point ...
  • G. R. Amin and A. Emrouznejad, An extended minimax disparity ...
  • V. S. Anitha and M. P. Sebastian, (k, r)-dominating set-based, ...
  • T. Avram, S. Oh and S. Hariri, Analyzing attacks in ...
  • N. Y. Aydin, E. Kentel and S. Duzgun, GIS-based environmental ...
  • K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. ...
  • C. Bishop, Neural networks for pattern recognition, Oxford University Press, ...
  • A. P. Bradley, The use of the area under the ...
  • J. B. D. Cabrera, C. Gutierrez and R. K. Mehra, ...
  • J. B. D. Cabrera, C. Gutierrez and R. K. Mehra, ...
  • N. Cagman and S. Enginoglu, Fuzzy soft matrix theory and ...
  • Z. Chen, Consensus in group decision making under linguistic assessments, ...
  • W. Chen, N. Jain and S. Singh, ANMP: ad hoc ...
  • H. Chen and L. Zhou, An approach to group decision ...
  • S. Cho, Fuzzy aggregation of modular neural networks with ordered ...
  • A. De and E. D. Diaz, A fuzzy ordered weighted ...
  • H. Deng, R. Xu, J. Li, F. Zhang, R. Levy ...
  • H. Deng, Q. A. Zeng and D. P. Agrawal, SVM-based ...
  • M. Dursun, E. E. Karsak and M. A. Karadayi, A ...
  • A. Emrouznejad, MP-OWA: the most preferred OWA operator, Knowledge-Based Systems,۲۱ ...
  • A. Emrouznejad and G. R. Amin, Improving minimax disparity model ...
  • D. Filev and R. R. Yager, On the issue of ...
  • R. Fuller and P. Majlender, An analytic approach for obtaining ...
  • R. Fuller and P. Majlender, On obtaining minimal variability OWA ...
  • M. A. Ghaderi, N. Yazdani, B. Moshiri and M. Tayefeh ...
  • G. Giacinto, R. Perdisci, M. Del Rio and F. Roli, ...
  • F. Herrera, E. Herrera-Viedma and J. L. Verdegay, Direct approach ...
  • Y. C. Hu, A. Perrig and D. B. Johnson, Rushing ...
  • Y. C. Hu, A. Perrig and D. B. Johnson, Wormhole ...
  • Y. Huang, W. Fan, W. Lee and P. Yu, Cross-feature ...
  • Y. A. Huang and W. Lee, Attack analysis and detection ...
  • S. Jazebi, A. Tohidi and M. Rahgozar, Application of classi er ...
  • T. Kohonen, self-organizing maps, Springer-Verlag, ۳rd edition, ۲۰۰۱ ...
  • L. I. Kuncheva, Combining pattern classi ers, methods and algorithms, John ...
  • C. X. Ling, J. Huang and H. Zhang, AUC: a ...
  • X. Liu, The solution equivalence of minimax disparity and minimum ...
  • X. Liu, A general model of parameterized OWA aggregation with ...
  • B. Llamazares, Choosing OWA operator weights in the eld of ...
  • C. Lo and W. Chen, A hybrid information security risk ...
  • P. Majlender, OWA operators with maximal Renyi entropy, Fuzzy Sets ...
  • J. McElroy and P. Gader, Generalized encoding and decoding operators ...
  • J. M. Merigo and M. Casanovas, Fuzzy generalized hybrid aggregation ...
  • J. M. Merigo and M. Casanovas, Decision-making with distance measures ...
  • J. M. Merigo and M. Casanovas, Induced aggregation operators in ...
  • J. M. Merigo and M. Casanovas, Induced and uncertain heavy ...
  • J. M. Merigo and A. M. Gil-Lafuente, The induced generalized ...
  • J. M. Merigo and A. M. Gil-Lafuente, Fuzzy induced generalized ...
  • H. Nakayama, S. Kurosawa, A. Jamalipour, Y. Nemoto and N. ...
  • J. Nin, B. Carminati, E. Ferrari and V. Torra, Computing ...
  • NS-۲ (network simulator version ۲), URL: http://www.isi.edu/nsnam/ns/ns-documentation,[۵۴] M. O'Hagan, Aggregating ...
  • R. Perdisci, D. Ariu, P. Fogla, G. Giacinto and W. ...
  • C. Perkins and E. Royer, Ad hoc on demand distance ...
  • C. Perkins, E. Royer and S. Das, Ad hoc on ...
  • J. Renaud, E. Levrat and C. Fonteix, Weights determination of ...
  • R. Sadiq and S. Tesfamariam, Probability density functions-based weights for ...
  • B. Scholkopf, J. C. Platt, J. S. Taylor, A. J. ...
  • F. Szidarovszky and M. Zarghami, Combining fuzzy quanti ers and neat ...
  • D. M. J. Tax, One-class classi cation, Ph.D. Dissertation, Delft University ...
  • J. A. Torkestani and M. R. Meybodi, Clustering the wireless ...
  • Y. M. Wang and C. Parkan, A minimax disparity approach ...
  • Y. M. Wang and C. Parkan, A preemptive goal programming ...
  • Y. Wu and J. Liu, A new method for sh ...
  • J. Wu, B. L. Sun, C. Y. Liang and S. ...
  • Y. Wu, X. Tan and S. Gu, A learning evaluation ...
  • Z. Xu, Induced uncertain linguistic OWA operators applied to group ...
  • R. R. Yager, On ordered weighted averaging aggregation operators in ...
  • R. R. Yager, Families of OWA operators, Fuzzy Sets and ...
  • R. R. Yager, Quanti er guided aggregation using OWA operators, International ...
  • R. R. Yager, Heavy OWA operators, Fuzzy Optimization and Decision ...
  • R. R. Yager, OWA aggregation over a continuous interval argument ...
  • R. R. Yager, Centered OWA operators, Soft Computing, ۱۱ (۲۰۰۷), ...
  • R. R. Yager, On the dispersion measure of OWA operators, ...
  • R. R. Yager and D. P. Filev, Induced ordered weighted ...
  • J. Y. Yu and P. H. J. Chong, A survey ...
  • Y. Zhang and W. Lee, Intrusion detection in wireless ad ...
  • Y. Zhang, W. Lee and Y. Huang, Intrusion detection techniques ...
  • L. G. Zhou and H. Y. Chen, Continuous generalized OWA ...
  • S. M. Zhou, F. Chiclana, R. I. John and J. ...
  • S. M. Zhou, F. Chiclana, R. I. John and J. ...
  • نمایش کامل مراجع