Regularization of Water Flooding Optimization

سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,173

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IPEC02_139

تاریخ نمایه سازی: 22 خرداد 1391

چکیده مقاله:

The use of smart well technology to optimize water flooding introduces a large number of control parameters both in space (well segments) and time. The problem of finding the optimal control parameters to maximize net present value as an objective function can be solved with the aid of a gradient-based optimization method. Using too many parameters may lead to a large number of local maxima in the objective function, so the gradient-based optimization method may result in suboptimal solutions.In this work, proper orthogonal decomposition is applied to regularize gradient-based control parameter optimization by projecting the original high dimensional control space onto a low dimensional subspace and thus reduce the number of control parameters.Numerical examples indicate that a regularization approach with the aid of proper orthogonal decomposition may speed up the convergence rate, and also may increase the convergence to the global solution within shorter optimization time compared to optimization without regularization technique. The method effectively reduces the control effort by grouping multiple well settings in space and time and treating them as one control parameter

نویسندگان

Reza Malekzadeh

Arvandan oil and gas company, Khoramshahr, Iran and department of geotechnology, Delft university of technology, ۵۰۲۸ Delft, Netherlands

J.D Jansen

Department of geotechnology, Delft university of technology, ۵۰۲۸ Delft, Netherlands and Shell international E&P

R. Markovinovic

Department of geotechnology, Delft university of technology, ۵۰۲۸ Delft, Netherlands

j Rommelse

Department of geotechnology, Delft university of technology, ۵۰۲۸ Delft, Netherlands.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Brouwer, D.R., Jansen, J.D.: "Dynamic Optimization of Water Flooding with ...
  • Brouwer, D.R.: "Dynamic water flood optimization with smart wells using ...
  • Bunks, C., Saleck, F.M., Zaleski, S., Chavent, G.: "Multi scale ...
  • Ameur, H.B., Chavent, G., Jaffr, J.: "Refinement and coarsening indicators ...
  • Chavnet, G., Liu, J.: "Multi scale pa rameterization for the ...
  • Chard aire-Riviere , C., Chavnet, G., Jaffr, J., Liu, J.: ...
  • Yoon, S., Malallah, A.H., Datta-Gupta, A., Vasco, D.W., Behrens, R.A.: ...
  • Lien, M., Jansen, J.D., Mannseth, T., Brouwer, D.R.: "Multiscale regularization ...
  • Markovinovic, R., Geurtsen, E.L, Heijn, T., Jansen, J.D.: "Generation of ...
  • Heijn, T., Markovinovic, R., Jansen, J.D.: "Generation of low-order reservoir ...
  • Markovinovic, R., Rommelse, J.R., Jansen, J.D.: "Reduced rep resentations in ...
  • Biggs, M.C.: "Constrained Minimization Using Recursive Quadratic Programmming, ; _ ...
  • Han, S.P.: _ Globally Convergent Method for Nonlinear Prog raming, ...
  • Powell, M.J.D.: _ Convergence of Variable Metric Methods for Nonlinearly ...
  • Powell, M.J.D.: _ Fast Algorithm for Nonlinearly Constrained Optimization Calculations, ...
  • Jansen, J.D., Brouwer, D.R, Naevdal, G., van Kruijsdijk, C.P.J.W.: "Closed-loop ...
  • نمایش کامل مراجع