Entropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
محل انتشار: مجله سیستم های فازی، دوره: 11، شماره: 3
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 186
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-11-3_006
تاریخ نمایه سازی: 31 خرداد 1401
چکیده مقاله:
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a subset of system requirements. There are many non-functional requirements for an applicable and practical IDS. The process should be online, incremental and adaptive to ever changing behaviors of normal users and attackers. Moreover providing comprehensive and interactive IDS could both, enhance the performance of the system and extend the knowledge of domain experts.In this paper, we propose a fuzzy rule-based classification system using a hierarchical rule learning method. In each stage of the hierarchy, a set of rules with certain length of antecedent are investigated. A novel rule weighting method, based on the entropy measure, determines the appropriateness of each rule. The experimental results on KDD۹۹ intrusion detection dataset show the effectiveness of the proposed method in tackling the tradeoff between accuracy and comprehensibility of fuzzy rule-based systems. Although the dimension of antecedents is not limited, the resultant rule-base contains a small number of complex rules, which are essential to reach the desired accuracy.
کلیدواژه ها:
Intrusion detection ، Hierarchical classification ، Iterative fuzzy rule-based system ، Rule weighting ، Entropy measure ، KDD۹۹
نویسندگان
Mohammad Reza Moosavi
Department of Computer Science and Eng. and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Mahsa Fazaeli Javan
Department of Computer Science and Eng. and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Mohammad Hadi Sadreddini
Department of Computer Science and Eng. and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Mansoor Zolghadri Jahromi
Department of Computer Science and Eng. and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :