Abnormal Behavior Detection over Normal Data and Abnormal-augmented Data in Crowded Scenes

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 186

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-10-2_003

تاریخ نمایه سازی: 28 خرداد 1401

چکیده مقاله:

In this article, we consider the problems of abnormal behavior detection in a high-crowded environment. One of the main issues in abnormal behavior detection is the complexity of the structure patterns between the frames. In this paper, social force and optical flow patterns are used to prepare the system for training the complexity of the structural patterns. The cycle GAN system has been used to train behavioral patterns. Two models of normal and abnormal behavioral patterns are used to evaluate the accuracy of the system detection. In the case of abnormal patterns used for training, due to the lack of this type of behavioral pattern, which is another challenge in detecting the abnormal behaviors, the geometric techniques are used to augment the patterns. If the normal behavioral patterns are used for training, there is no need to augment the patterns because the normal patterns are sufficient. Then, by using the cycle generative adversarial nets (cycle GAN), the normal and abnormal behaviors training will be considered separately. This system produces the social force and optical flow pattern for normal and abnormal behaviors on the first and second sides. We use the cycle GAN system both to train behavioral patterns and to assess the accuracy of abnormal behaviors detection. In the testing phase, if normal behavioral patterns are used for training, the cycle GAN system should not be able to reconstruct the abnormal behavioral patterns with high accuracy.

کلیدواژه ها:

نویسندگان

V. Fazel Asl

Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

B. Karasfi

Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

B. Masoumi

Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Ravanbakhsh, E. Sangineto, M. Nabi, and N. Sebe, "Training ...
  • R. Chaker, Z. A. Aghbari, and I. N. Junejo, "Social ...
  • A. Samdurkar, Sh. Kamble, Ni. Thakur, and A. Patharkar, "Overview ...
  • Li. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, ...
  • T. A. Mostafa, J. Uddin, and M. H. Ali, "Abnormal ...
  • M. Bertini, A. D. Bimbo and L. Seidenari, "Multi-scale and ...
  • C. Lu, J. Shi, W. Wang, and J. Jia, "Fast ...
  • J. Wang and Z. Xu, "Spatio-temporal texture modelling for real-time ...
  • Y. S. Chong and Y. H. Tay, "Abnormal Event Detection ...
  • M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C. Regazzoni, ...
  • J. Zhu, T. Park, P. Isola, and A. A. Efros, ...
  • K. E. Ko and K. B. Sim, "Deep convolutional framework ...
  • M. Paul, S. M. E. Haque, and S. Chakraborty, "Human ...
  • C. Hemalatha, S. Muruganand, and R. Maheswaran, "A Survey on ...
  • T. Anbu, M. M. Joe, and G. Murugeswari, "A comprehensive ...
  • Y. Xiao, Zh. Tian, J. Yu, Y. Zhang, Sh. Liu, ...
  • A. E. Gunduz, C. Ongun, T. T. Temizel, and A. ...
  • D. Shehab and H. Ammar, "Statistical detection of a panic ...
  • S. Ezatzadeh and M. R. Keyvanpour, "ViFa: an analytical framework ...
  • C. Vishnu, D. Singh, C. K. Mohan, and S. Babu, ...
  • J. Wang and Z. Xu, "Crowd anomaly detection for automated ...
  • D. Dawei, Q. Honggang, H. Qingming, Z. Wei, and Z. ...
  • H. Chebi and D. Acheli, "Dynamic detection of anomalies in ...
  • A. Li, Z. Miao, Y. Cen, and Q. Liang, "Abnormal ...
  • K. Vignesh, G. Yadav, and A. Sethi, "Abnormal Event Detection ...
  • T. Wang, J. Chen, and H. Snoussi, "Online Detection of ...
  • X. Li, Y. She, D. Luo, and Zh. Yu, "A ...
  • M. Manfredi, R. Vezzani, S. Calderara, and R. Cucchiara, "Detection ...
  • M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. ...
  • X. Zong, Y. Chen, A. Liu, R. Li, S. Liu, ...
  • C. Spampinato, S. Palazzo, P. D'Oro, D. Giordano, and M. ...
  • S. Hamdi, S. Bouindour, K. Loukil, H. Snoussi, and M. ...
  • I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. ...
  • P. Isola, J. Zhu, T. Zhou, and A. A. Efros, ...
  • E. Pejhan and M. Ghasemzadeh, "Multi-Sentence Hierarchical Generative Adversarial Network ...
  • Th. Brox, A. Bruhn, N. Papenberg, and J. Weickert, "High ...
  • R. Mehran, A. Oyama, and M. Shah, "Abnormal crowd behavior ...
  • V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, "Anomaly ...
  • C. Lu, J. Shi, and J. Jia, "Abnormal Event Detection ...
  • W. Li, V. Mahadevan, and N. Vasconcelos, "Anomaly detection and ...
  • D. Xu, Y. Yan, E. Ricci, and N. Sebe, "Detecting ...
  • J. Kim and K. Grauman, "Observe locally, infer globally: A ...
  • Y. Cong, J. Yuan, and J. Liu, "Sparse reconstruction cost ...
  • M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, and N. ...
  • H. Mousavi, M. Nabi, H. Kiani, A. Perina, and V. ...
  • Y. Hao, Y. Liu, J. Fan, and Z. Xu, "Group ...
  • A. Feizi, "Hierarchical detection of abnormal behaviors in video surveillance ...
  • نمایش کامل مراجع