Triangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 164

فایل این مقاله در 29 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-13-5_008

تاریخ نمایه سازی: 24 خرداد 1401

چکیده مقاله:

As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the information of attribute values for multi-attribute group decision making (MAGDM) with TIFNs. The purpose of this paper is to develop some Bonferroni harmonic operators of TIFNs and apply to the MAGDM problems with TIFNs. The weighted possibility means of TIFN are firstly defined. Hereby, a new lexicographic approach is presented to rank TIFNs sufficiently considering the risk preference of decision maker. The sensitivity analysis on the risk preference parameter is made. Then, three kinds of triangular intuitionistic fuzzy Bonferroni harmonic aggregation operators are defined, including a triangular intuitionistic fuzzy triple weighted Bonferroni harmonic mean operator (TIFTWBHM) operator, a triangular intuitionistic fuzzy triple ordered weighted Bonferroni harmonic mean (TIFTOWBHM) operator and a triangular intuitionistic fuzzy triple hybrid Bonferroni harmonic mean (TIFTHBHM) operator. Some desirable properties for these operators are discussed in detail. By using the TIFTWBHM operator, we can obtain the individual overall attribute values of alternatives, which are further integrated into the collective ones by the TIFTHBHM operator. The ranking order of alternatives is generated according to the collective overall attribute values of alternatives. A real investment selection case study verifies the validity and applicability of the proposed method.

کلیدواژه ها:

Multi-attribute group decision making ، Triangular intuitionistic fuzzy number ، Possibility mean ، Bonferroni mean ، Harmonic mean

نویسندگان

Shu-Ping Wan

College of Information Technology, Jiangxi University of Finance and Economics, Nanchang ۳۳۰۰۱۳, China

Yong-Jun Zhu

College of Information Technology, Jiangxi University of Finance and Economics, Nanchang ۳۳۰۰۱۳, China

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, ۲۰(۱) ...
  • G. Beliakov, S. James, J. Mordelova, T. Ruckschlossova and R. ...
  • C. Bonferroni, Sulle medie multiple di potenze, Bolletino Matematica Italiana, ...
  • H. Y. Chen, C. L. Liu and Z. H. Sheng, ...
  • J. Y. Dong and S. P. Wan, A new method ...
  • J. Y. Dong and S. P.Wan, A new method for ...
  • B. Dutta and D. Guha, Trapezoidal intuitionistic fuzzy Bonferroni means ...
  • D. P. Filev and R. R. Yager, On the issue ...
  • R. Fuller and P. Majlender, On weighted possibilistic mean and ...
  • D. F. Li, A note on "using intuitionistic fuzzy sets ...
  • D. F. Li, A ratio ranking method of triangular intuitionistic ...
  • D. F. Li, J. X. Nan and M. J. Zhang, ...
  • J. X. Nan, D. F. Li and M. J. Zhang, ...
  • J. H. Park and E. J. Park, Generalized fuzzy Bonferroni ...
  • M. H. Shu, C. H. Cheng and J. R. Chang, ...
  • H. Sun and M. Sun, Generalized Bonferroni harmonic mean operators ...
  • S. P. Wan, G. L. Xu, F. Wang and J. ...
  • S. P. Wan and D. F. Li, Fuzzy mathematical programming ...
  • S. P. Wan and J. Y. Dong, Interval-valued intuitionistic fuzzy ...
  • S. P. Wan and J. Y. Dong, Power geometric operators ...
  • S. P. Wan, F. Wang and J. Y. Dong,A novel ...
  • S. P. Wan, F. Wang, L. L. Lin and J. ...
  • S. P. Wan, Q. Y. Wang and J. Y. Dong, ...
  • S. P. Wan and J. Y. Dong, Possibility method for ...
  • S. P. Wan, F. Wang and L. L. Lin, Some ...
  • S. P. Wan, L. L. Lin and J. Y. Dong, ...
  • J. Q.Wang, R. R. Nie, H. Y. Zhang and X. ...
  • G. W. Wei, FIOWHM operator and its application to multiple ...
  • M. M. Xia, Z. S. Xu and B. Zhu, Generalized ...
  • Z. S. Xu, An overview of methods for determining OWA ...
  • Z. S. Xu and R. R. Yager, Intuitionistic fuzzy Bonferroni ...
  • Z. S. Xu, Fuzzy harmonic mean operator, International Journal of ...
  • R. R. Yager, Prioritized OWA aggregation, Fuzzy Optimization and Decision ...
  • L. A. Zadeh, Fuzzy sets, Information and Control, ۸ (۱۹۶۵), ...
  • نمایش کامل مراجع