MULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON BONFERRONI MEAN OPERATOR and possibility degree OF INTERVAL TYPE-۲ TRAPEZOIDAL FUZZY SETS
محل انتشار: مجله سیستم های فازی، دوره: 13، شماره: 5
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 162
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-13-5_007
تاریخ نمایه سازی: 24 خرداد 1401
چکیده مقاله:
This paper proposes a new approach based on Bonferroni mean operator and possibility degree to solve fuzzy multi-attribute decision making (FMADM) problems in which the attribute value takes the form of interval type-۲ fuzzy numbers. We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two interval trapezoidal type-۲ fuzzy sets (IT۲ TrFSs). Then, we develop two aggregation techniques, which are called the interval type-۲ trapezoidal fuzzy Bonferroni mean (IT۲TFBM) operator and the interval type-۲ trapezoidal fuzzy weighted Bonferroni mean (IT۲TFWBM) operator. We study their properties and discuss their special cases. Based on the IT۲TFWBM operator and the possibility degree, a new method of multi-attribute decision making with interval type-۲ trapezoidal fuzzy information is proposed. Finally, an illustrative example is given to verify the developed approaches and to demonstrate their practicality and effectiveness.
کلیدواژه ها:
Multi-attributes group decision making ، Interval type-۲ fuzzy sets ، Bonferroni mean operator ، IT۲TFWBM operator
نویسندگان
Yanbing Gong
Department of Information Management, Hohai University,Changzhou, Jiangsu Province, China
Liangliang Dai
Department of Information Management, Hohai University,Changzhou, Jiangsu Province, China
Na Hu
Department of Information Management, Hohai University,Changzhou, Jiangsu Province, China
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :