Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 288
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-33-2_012
تاریخ نمایه سازی: 23 خرداد 1401
چکیده مقاله:
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy numbers, a similarity criterion based on the intersection region of the fuzzy numbers is used. The performance of the suggested clustering method has been experimented on both benchmark and artificial datasets. These datasets are used in the fuzzy form. The experiential results represent that the suggested clustering method with fuzzy cluster centers can cluster triangular fuzzy datasets like other standard uncertain data clustering methods. Experimental results demonstrate that, in almost all datasets, the proposed clustering method provides better results in accuracy when compared to Uncertain K-Means and Uncertain K-medoids algorithms.
کلیدواژه ها:
Clustering ، Particle swarm clustering method ، Uncertain data ، Triangular fuzzy data ، Fuzzy cluster centers ، Similarity value.
نویسندگان
seyed hamid zahiri
Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
najme ghanbari
Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
Hadi Shahraki
Department of Computer Engineering, Faculty of Industry and Mining, University of Sistan and Baluchestan, Khash, Iran