Experimental Comparison of Financial Distress Prediction Models Using Imbalanced data sets
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 339
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-7-3_016
تاریخ نمایه سازی: 21 خرداد 1401
چکیده مقاله:
From machine learning perspective, the problem of predicting financial distress is challenging because the distribution of the classes is extremely imbalanced. The goal of this study was comparing the performance of financial distress prediction models for the imbalanced data sets with different proportions. In this study, the data of the previous year before financial distress was used for ۷۶۰ company year for the time period of ۲۰۰۷-۲۰۱۷. Besides using traditional classifications such as logistic regression, linear discriminant analysis, artificial neural network, and the classification models of least square support vector machine with four kernel functions, random forest and the Knn algorithm, the measures of the area under the curve and Friedman and Nemenyi tests were also utilized to determine the average rank and the difference significance of the Auc of the models. For selecting the models´ optimal parameters, the combined method of grid search optimization and cross validation was used. The results of this experimental study showed that for the balanced and imbalanced datasets with lower proportions, the best performance was for the random forest. For more imbalanced datasets, the best performance belonged to the least square support vector machine with sigmoid, radial, and linear kernel functions; performance of Knn algorithm had no significant difference from the other models and the performance of the artificial neural network was average or appropriate. Also, the performances of the linear logistic regression and linear discriminant analysis were weaker than other nonlinear models.
کلیدواژه ها:
Imbalanced data sets ، Financial distress prediction models ، Grid search optimization ، Tuning parameters ، Financial ratios
نویسندگان
seyed behrooz razavi ghomi
Department of Accounting, Neyshabur Branch, Islamic Azad University,Neyshabur, Iran
Alireza Mehrazin
Department of Accounting, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
Abolghasem Massihabadi
Department of Accounting, Sabzevar Branch ,Islamic Azad University, Sabzevar, Iran
Mohammad reza shourvarzi
Department of Accounting, Neyshabur Branch , Islamic Azad University, Neyshabur, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :