Computational Investigation of Effects of Side-Injection Geometry on Thrust-Vectoring Performance in a Fuel-Injected Dual Throat Nozzle

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 162

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-15-4_014

تاریخ نمایه سازی: 18 خرداد 1401

چکیده مقاله:

Dual-throat Nozzle (DTN) is known as one of the most effective approaches of fluidic thrust-vectoring. It is gradually flourishing into a promising technology to implement supersonic and hypersonic thrust-vector control in aircrafts. The main objective of the present study is numerical investigation of the effects of secondary injection geometry on the performance of a fuel-injected planar dual throat thrust-vectoring nozzle. The main contributions of the study is to consider slot and circular geometries as injector cross-sections for injecting four different fuels; moreover, the impact of center-to-center distance of injection holes for circular injector is examined. Three-dimensional compressible reacting simulations have been conducted in order to resolve the flowfield in a dual throat nozzle with pressure ratio of ۴.۰. Favre-averaged momentum, energy and species equations are solved along with the standard  k- ε model for the turbulence closure, and the eddy dissipation model (EDM) for the combustion modelling. Second-order upwind numerical scheme is employed to discretize and solve governing equations. Different assessment parameters such as discharge coefficient, thrust ratio, thrust-vector angle and thrust-vectoring efficiency are invoked to analyze the nozzle performance. Computationally predicted data are agreed well with experimental measurements of previous studies. Results reveal that a maximum vector angle of ۱۷.۱ degrees is achieved via slot injection of methane fuel at a secondary injection rate equal to ۹% of primary flow rate. Slot injection is performing better in terms of discharge coefficient, thrust-vector angle and thrust-vectoring efficiency, whereas circular injection provides higher thrust ratio. At ۲% secondary injection for methane fuel, vector angle and vectoring efficiency obtained by slot injector is ۸% and ۳۴% higher than the circular injector, respectively. Findings suggest that light fuels offer higher thrust ratio, vector angle and vectoring efficiency, while heavy fuels have better discharge coefficient. Increasing center-to-center distance of injector holes improves thrust ratio, while having a negative effect on discharge coefficient, vector angle and vectoring efficiency. A comparison between fuel injectant of current study and inert injectant in the previous studies indicates that fuel reaction could exhibit substantial positive effects on vectoring performance. Secondary-to-primary momentum flux ratio is found to play a crucial role in nozzle performance. 

نویسندگان

M. R. Salimi

Aerospace Research Institute, Tehran, Iran

R. Askari

Aerospace Engineering, Independent Researcher

M. Hasani

University of Shahid Satari, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Anderson, C., V. Giuliano, D. C. Wing (۱۹۹۷). Investigation of ...
  • Aleiferis, P. G. and N. Papadopoulos (۲۰۲۱). Heat and mass ...
  • Berni, F., G. Cicalese, M. Borghi and S. Fontanesi (۲۰۲۱). ...
  • Bordoloi, N., K. M. Pandey and K. K. Sharma, (۲۰۲۱). ...
  • Chen, S., S. M. Randy Chue, C. M. Simon Yu ...
  • Deere, K. (۱۹۹۸) PAB۳D Simulations of a Nozzle with Fluidic ...
  • Deere, K. (۲۰۰۰). Computational Investigation of the Aerodynamic Effects on ...
  • Deere, K. (۲۰۰۳). Summary of Fluidic Thrust Vectoring Research at ...
  • Deere, K., B. Berrier, J. Flamm and S. Johnson (۲۰۰۳). ...
  • Deere, K., B. Berrier, J. Flamm and . Johnson (۲۰۰۵). ...
  • Deere, K., J. Flamm, B. Berrier and S. Johnson (۲۰۰۷). ...
  • Federspiel, J., L. Bangert, D. Wing and T. Hawkes (۱۹۹۵). ...
  • Flamm, J. (۱۹۹۸). Experimental Study of a Nozzle Using Fluidic ...
  • Flamm, J., K, Deere, B, Berrier, S, Johnson and M. ...
  • Flamm, J., K. Deere, M. Mason, B. Berrier and S. ...
  • Flamm, J., K. Deere, M. Mason, B. Berrier and S. ...
  • Numerical Investigation of Optimization of Injection Angle Effects on Fluidic Thrust Vectoring [مقاله ژورنالی]
  • Giuliano, V., D. Wing, V. Giuliano and D. Wing. (۱۹۹۷). ...
  • Gu, R. and J. Xu. (۲۰۱۴a). Effects of Cavity on ...
  • Gu, R., J. Xu and S. Guo (۲۰۱۴b). Experimental and ...
  • Gu, R. and J. Xu (۲۰۱۵). Dynamic Experimental Investigations of ...
  • Giuffrida, V., M. Bardi, M. Matrat, A. Robert and G. ...
  • Hamedi-Estakhrsar, M. H. and H. Mahdavy-Moghaddam (۲۰۲۰a). Experimental Evaluation and ...
  • Hamedi-Estakhrsar, M. H., M. Ferlauto and H. Mahdavy-Moghaddam (۲۰۲۱b). Numerical ...
  • Hamedi, H., M. Jahromi, M. Mahmoodi and J. Pirkandi (۲۰۱۵). ...
  • Hunter, C. and K. Deere (۱۹۹۹). Computational Investigation of Fluidic ...
  • Magnussen, B. F. and B. H. Hjertager (۱۹۷۷). On Mathematical ...
  • Ong, Y. L. F. Salehi, M. Ghiji and V. Garaniya ...
  • Spalding, D. B. (۱۹۷۱). Mixing and Chemical Reaction in Steady ...
  • Experimental Investigations on the Strut Controlled Thrust Vectoring of a Supersonic Nozzle [مقاله ژورنالی]
  • Verma, S., F. Monnier and A. N. Lipatnikov (۲۰۲۱). Validation ...
  • Waithe, K. and K. Deere (۲۰۰۳). An Experimental and Computational ...
  • Wang, Y. S., J. L. Xu, S. Huang, Y. C. ...
  • Wang, Y., J. Xu, S. Huang, J. Jiang and R. ...
  • Wing, D. J. (۱۹۹۴). Static Investigation of Two Fluidic Thrust-Vectoring ...
  • Wing, D. J., and V. J. Giuliano (۱۹۹۷). Fluidic Thrust ...
  • Numerical Study of Fluidic Thrust Vector Control Using Dual Throat Nozzle [مقاله ژورنالی]
  • Yagle, P. J., D. N. Miller, K. B. Ginn and ...
  • نمایش کامل مراجع