TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 143

فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-15-7_004

تاریخ نمایه سازی: 17 خرداد 1401

چکیده مقاله:

In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the basic tasks in time series analysis. We prove that  high frequencies appearing in the seasonal component can be  arbitrarily suppressed and that random noise, as a stationary process, can be successfully decreased  using the fuzzy transform of higher degree with a reasonable adjustment of parameters of a generalized uniform fuzzy partition.

نویسندگان

Michal Holcapek

Institute for Research and Applications of Fuzzy Modelling, NSC IT۴Innovations, University of Ostrava, ۳۰. dubna ۲۲, ۷۰۱ ۰۳ Ostrava ۱, Czech Republic

Linh Nguyen

Institute for Research and Applications of Fuzzy Modelling, NSC IT۴Innovations, University of Ostrava, ۳۰. dubna ۲۲, ۷۰۱ ۰۳ Ostrava ۱, Czech Republic

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • T. Alexandrov, S. Bianconcini, E. B. Dagum, P. Maass and ...
  • S. Cleveland and S. Devlin, Locally-weighted regression: an approach to ...
  • N. Golyandina and A. Zhigljavsky, Singular spectrum analysis for time ...
  • M. Holcapek and L. Nguyen, Suppression of high frequencies in ...
  • M. Holcapek, V. Novak and I. Perfi lieva, Noise reduction in ...
  • M. Holcapek, I. Perfi lieva, V. Novak and V. Kreinovich, Necessary ...
  • M. Holcapek and T. Tichy, A smoothing fi lter based on ...
  • A. H. Jazwinski, Stochastic Processes and Filtering Theory, Mineola, NY: ...
  • I. Kodorane and S. Asmuss, On approximation properties of spline ...
  • M. Kokainis and S. Asmuss, Approximation properties of higher degree ...
  • V. Novak, I. Perfi lieva, M. Holcapek and V. Kreinovich, Filtering ...
  • V. Novak, M. Stepnicka, A. Dvorak, I. Perfi lieva, V. Pavliska ...
  • V. Novak, M. Stepnicka, I. Perfi lieva and V. Pavliska, Analysis ...
  • E. Kerre (eds.), Computational Intelligence in Decision and Control, World ...
  • I. Perfi lieva, Fuzzy transforms, Peters, James F. (ed.) et al., ...
  • Journal Subline, (۲۰۰۴), ۶۳{۸۱ ...
  • I. Perfi lieva, Fuzzy transforms: Theory and applications, Fuzzy Sets and ...
  • I. Perfi lieva and M. Dankova, Towards F-transform of a higher ...
  • I. Perfi lieva, M. Dankova and B. Bede, Towards a higher ...
  • I. Perfi lieva and R. Valasek, Fuzzy transforms in removing noise, ...
  • E. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford ...
  • A. M. Yaglom, An introduction to the Theory of Stationary ...
  • نمایش کامل مراجع