Sensing Image Regions for Enhancing Accuracy in People Re-identification
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 251
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJEE-13-3_009
تاریخ نمایه سازی: 17 خرداد 1401
چکیده مقاله Sensing Image Regions for Enhancing Accuracy in People Re-identification
Video surveillance systems are widely used in the public and private sectors for maintaining security and healthcare purposes. Performance of surveillance systems directly depends on their accuracy in re-identification. There are three regions in a camera view, including person’s body, background, and possible carried object by the person. Background, in existing approaches, is either overlooked or treated like a person’s body in re-identification. In this paper, these three regions are considered in re-identification but with different importance. In our proposed technique, first, the input image is semantically segmented into the three regions using a deep semantic segmentation approach. Then, the effect of each region on characteristic features of people is tuned depending on the region’s importance in re-identification. The proposed technique, leveraging robust descriptors, such as the Gaussian of Gaussian (GOG) and Hierarchical Gaussian Descriptors (HGD), can enhance existing methods in dealing with the challenging issues such as partial occlusion caused by carried objects and background in re-identification. Experimental results on commonly used people re-identification datasets demonstrate effectiveness of the proposed technique in improving performance of existing re-identification methods.
کلیدواژه های Sensing Image Regions for Enhancing Accuracy in People Re-identification:
نویسندگان مقاله Sensing Image Regions for Enhancing Accuracy in People Re-identification
H. Hassanpour
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
Z. Mortezaie
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
A. Beghdadi
Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :