Analytical Approach to Exploring the Missing Data Behavior in Smart Home Energy Consumption Dataset
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 161
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JREE-9-2_005
تاریخ نمایه سازی: 16 خرداد 1401
چکیده مقاله:
Smart homes are considered to be the subset of smart grids that have gained widespread popularity and significance in the present energy sector. These homes are usually equipped with different kinds of sensors that communicate between appliances and the metering infrastructure to monitor and trace the energy consumption details. The smart meters trace the energy consumption data continuously or in a period of intervals as required. Sometimes, these traces will be missed due to errors in communication channels, an unexpected breakdown of networks, malfunctioning of smart meters, etc. This missingness greatly impacts smart home operations such as load estimation and management, energy pricing, optimizing assets, planning, decision making, etc. Moreover, to implement a suitable precautionary measure to eliminate missing of data traces, it is required to understand the past behavior of the data anomalies. Hence, it is essential to comprehend the behavior of missing data in the smart home energy consumption dataset. In this regard, this paper proposes an analytical approach to detect and quantify the missing data instants in all days for all appliances. Using this quantification, the behavior of missing data anomalies is analyzed during the day. For the analysis, a practical smart home energy consumption dataset ‘Tracebase’ is considered. Initially, the existence and the count of missing instants are computed. From this, the appliance ‘MicrowaveOven’ is considered for further analysis as it comprises the highest count of missing instants (۸۴۷۴۰) in a day when compared to all other appliances. Finally, the proposed analysis reveals that the large number of missing instants is occurring during the daylight period of a day.
کلیدواژه ها:
نویسندگان
Purna Prakash Kasaraneni
School of Computer Science and Engineering, VIT-AP University, Amaravati-۵۲۲۲۳۷, Andhra Pradesh, India
Pavan Kumar Yellapragada Venkata
School of Electronics Engineering, VIT-AP University, Amaravati-۵۲۲۲۳۷, Andhra Pradesh, India.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :