SHORT-TERM ELECTRICAL DEMAND FORECASTING IMPROVEMENT BY APPLYING GAUSSIAN FILTER TO THE TIME SERIES

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 146

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CIRED07_156

تاریخ نمایه سازی: 31 اردیبهشت 1401

چکیده مقاله:

Short-term electrical load forecasting especially for the next ۲۴ hours (next day) is one of the most interesting topics in the power distribution systems and smart grids. Principal component analysis (PCA), support vector regression (SVR) and artificial neural network (ANN) are among the widely used load forecasting methods. To improve the efficiency of these methods, it is proposed that a Gaussian filter is applied to the electrical load time series before forecasting implementation. This filtering removes the outlier points and redundant information contained in the electricity consumption curve and so, the forecasting error is significantly improved. The experimental results on an electricity consumption dataset collected by the residential customers in Ireland show that the mean absolute percentage error is reduced in average from approximately ۷.۵% to less than ۰.۳%.

نویسندگان

Maryam Imani

Faculty of Electrical and Computer Engineering Tarbiat Modares University Tehran, Iran