Analytical Solutions of Finite Wedges Coated by an Orthotropic Coating Containing Multiple Cracks and Cavities
محل انتشار: فصلنامه مکانیک جامد، دوره: 14، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 193
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSMA-14-2_005
تاریخ نمایه سازی: 25 اردیبهشت 1401
چکیده مقاله:
This paper presents a general formulation for an isotropic wedge reinforced by an orthotropic coating involving multiple arbitrarily oriented defects under out of plane deformation. The exact closed form solution of the problem weakened by a screw dislocation in the isotropic wedge is obtained by making use of finite Fourier cosine transform. Also, the closed-form solutions of the out of plane stress and displacement fields are obtained. After that, by making use of a distributed dislocation approach, a set of singular integral equations of the domain involving smooth cavities and cracks subjected to out of plane external loading are achieved. The cracks and cavities are considered to be only in the isotropic wedge. The presented integral equations have Cauchy singularity and must be evaluated numerically. Multiple numerical examples will be presented to show the applicability and efficiency of the presented solution. The geometric and point load singularities of the stress components are obtained and compared with the available data in the literature.
کلیدواژه ها:
Out of plane ، Isotropic wedges ، Orthotropic coating ، Mode III Stress intensity factor ، Hoop stress ، Distributed dislocation method
نویسندگان
A Ajdari
Department of Mechanical Engineering, Iran University of Science & Technology (IUST), Tehran , Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :