Attitude to Speeding in Iran: Identifying Drivers Characteristics
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 278
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJTE-9-4_005
تاریخ نمایه سازی: 17 اردیبهشت 1401
چکیده مقاله:
Exceeding the posted speed limit is a contributing factor in rural crashes, and speed violations have a significant effect on road safety. The current study aims to identify at-fault driver features in speeding violations occurring at all rural roads of Iran using ۱۱,۶۳۶ drivers involved in two-vehicle speeding crashes. For this purpose, the quasi-induced exposure concept, Classification and regression tree, and logistic regression methods were employed. Drivers' gender had a significant effect on being at-fault, and women's risk was approximately two times higher than men. The risk of drivers in the ">۵۸" age group was the highest and nearly twice the "۱۸-۲۷" group. In the vehicle type, the pickup had a risk of nearly ۲۶ times higher than the bus. The finding showed that females have more risky behavior than male counterparts in speeding. Totally, the at-fault risk will grow more with increasing drivers' age. Type ۱ driving license in speeding crashes has a significant effect on the risk of drivers' being at-fault. Moreover, among statistically significant vehicle types, the pickup had the highest risk. The results emphasize more attention to female and old drivers, their license type, pickup vehicles, and prepare practical countermeasures to reduce these crashes.
کلیدواژه ها:
نویسندگان
Ali Tavakoli Kashani
Associate Professor, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
Nasrin Nazari
Master of Transportation Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
saeideh Amirifar
Ph.D. Candidate in Transportation Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
Ali Afshar
Travel Demand Forecaster, Cambridge Systematics, Inc., ۲۵ Beaver St. Suite ۲۰۱, New York, NY ۱۰۰۰۴.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :