Energy-aware task scheduling in cloud compting based on discrete pathfinder algorithm
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 9
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 250
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-9_011
تاریخ نمایه سازی: 10 اردیبهشت 1401
چکیده مقاله:
Task scheduling is one of the fundamental issues that attract the attention of lots of researchers to enhance cloud performance and consumer satisfaction. Task scheduling is an NP–hard problem that is challenging due to the several conflicting objectives of users and service providers. Therefore, meta-heuristic algorithms are the more preferred option for solving scheduling problems in a reasonable time. Although many task scheduling algorithms are proposed, existing strategies mainly focus on minimizing makespan or energy consumption while ignoring other performance factors. In this paper, we propose a new task scheduling algorithm based on the Discrete Pathfinder Algorithm (DPFA) that is inspired by the collective movement of the animal group and mimics the guidance hierarchy of swarms to find hunt. The proposed scheduler considers five objectives (i.e., makespan, energy consumption, throughput, tardiness, and resource utilization) as cost functions. Finally, different algorithms such as Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Grasshopper Optimization Algorithm (GOA), and Bat Algorithm (BA), are used for comparison. The experimental results indicate that the proposed scheduling algorithm can improve up to ۹.۱۶%, ۳۸.۴۴%, ۳.۵۹%, and ۳.۴۴% the makespan in comparison with FA, BA, PSO, and GOA, respectively. Moreover, the results show dramatic improvements in terms of resource utilization, throughput, and energy consumption.
کلیدواژه ها:
نویسندگان
A. Zandvakili
Department of Computer Science, Shahid Bahonar University of kerman, Kerman, Iran
N. Mansouri
Department of Computer Science, Shahid Bahonar University of kerman, Kerman, Iran
M. M. Javidi
Department of Computer Science, Shahid Bahonar University of kerman, Kerman, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :