Any-time randomized kinodynamic path planning algorithm in dynamic environments with application to quadrotor
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 10
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 164
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-10_017
تاریخ نمایه سازی: 10 اردیبهشت 1401
چکیده مقاله:
Kinodynamic path planning is an open challenge in unmanned autonomous vehicles and is considered an NP-Hard problem. Planning a feasible path for vertical take-off and landing quadrotor (VTOL-Q) from an initial state to a target state in ۳D space by considering the environmental constraints such as moving obstacles avoidance and non-holonomic constraints such as hard bounds of VTOL-Q is the key motivation of this study. To this end, let us propose the any-time randomized kinodynamic (ATRK) path-planning algorithm applicable in the VTOL-Q. ATRK path-planning algorithm is based on the Rapidly-exploring random trees (RRT) and consists of three main components: high-level, mid-level, and low-level controller. The high-level controller utilizes a randomized sampling-based approach to generate offspring vertices for rapid exploring and expanding in the configuration space. The mid-level controller uses the any-time method to avoid collision with moving obstacles. The low-level controller with a six-DOF dynamic model accounts for the kinodynamic constraints of VTOL-Q in the randomized offspring vertices to plan a feasible path. Simulation results on three different test-scenario demonstrate the kinodynamic constraints of the VTOL-Q are integrated into the randomized offspring vertices. Also, in presence of moving obstacles, the ATRK re-plans the path in the local area as through an any-time approach.
کلیدواژه ها:
نویسندگان
E. Taheri
Electrical Engineering Department, Malek Ashtar University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :